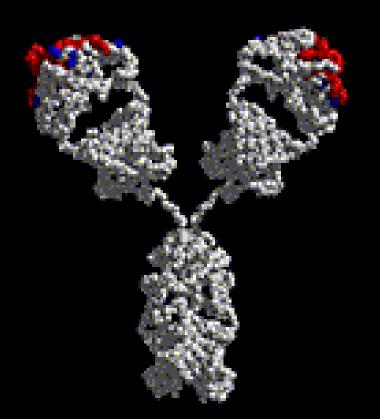
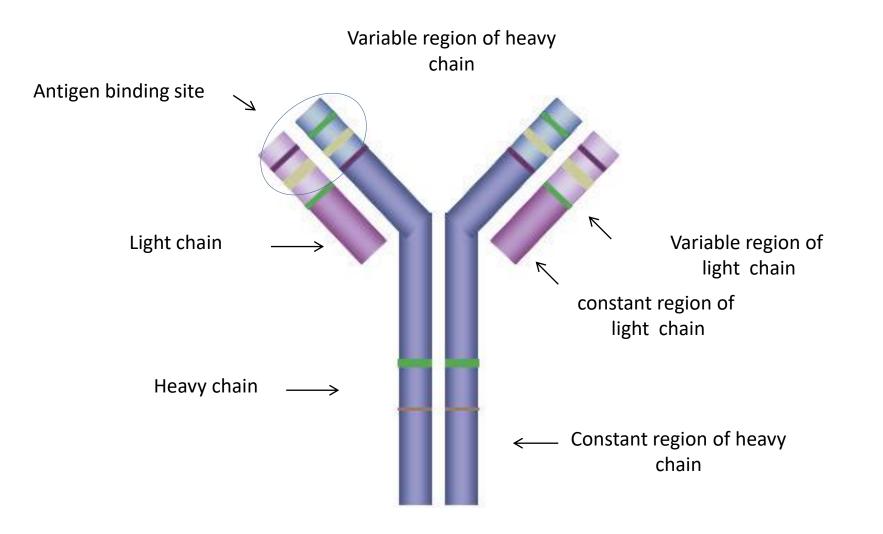
Monoclonal Antibody: A New Era of Medicine

Wisit Tangkeangsirisin, PhD

Faculty of Pharmacy, Biopharmacy Department Silpakorn University



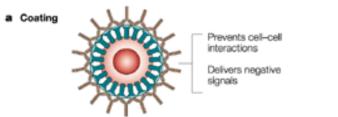

Immunological Basis

 Antigens are <u>recognized</u> by the body's immune system as <u>invaders</u>.

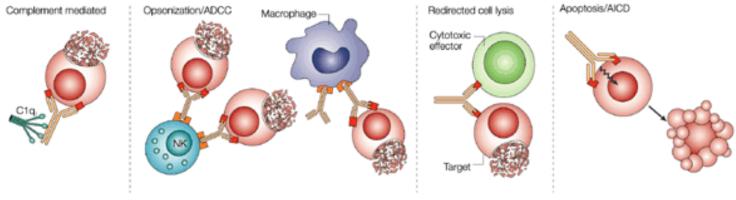
Our <u>natural defenses</u> against these infectious agents are <u>antibodies.</u>

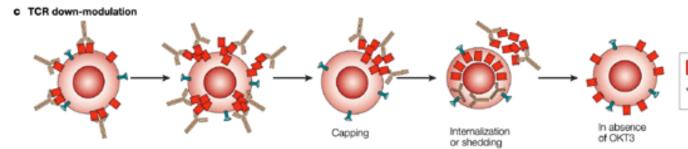
Antibody is the major player in biopharmaceutical bussiness.

Modes of Antibody Therapy

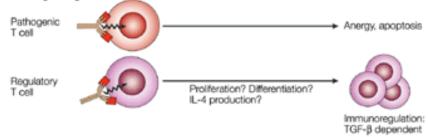

Passive

- Infectious diseases
 - diphtheria, measles, rubella, hepatitis, tetanus, rabies
- -Anti-venoms
- Active
 - -Cancer
 - Cardiovascular diseases
 - -Autoimmune diseases and transplantation

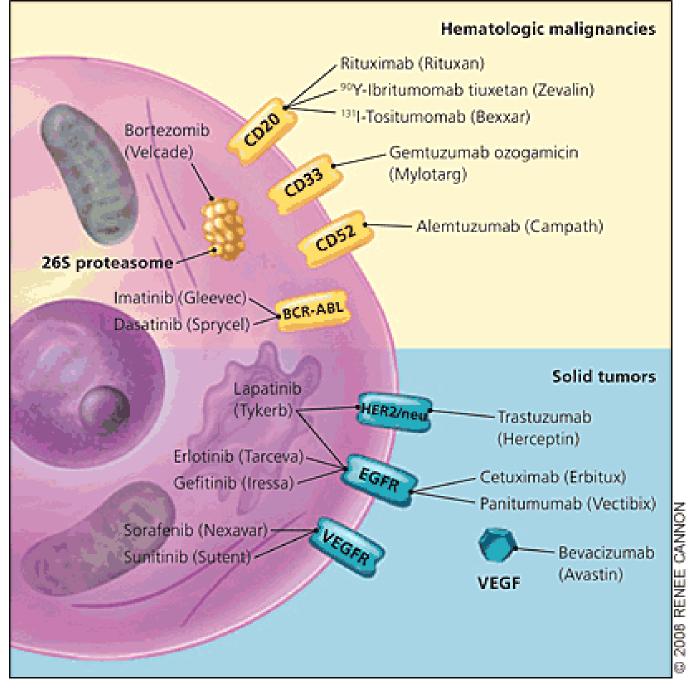

Therapeutic Categories of MAb

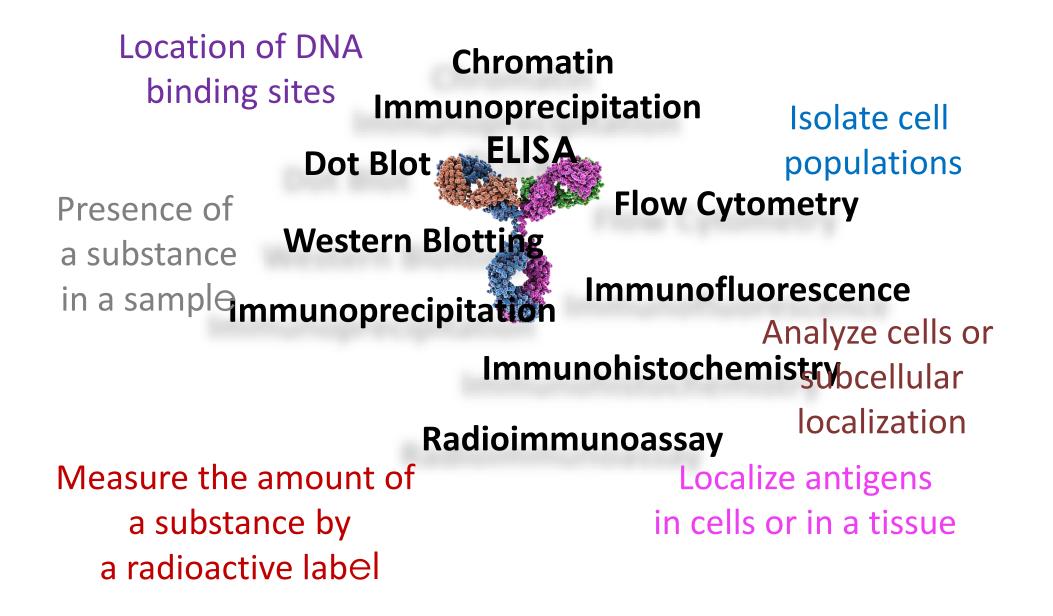

Oncology

- Cell depletion (Rituxan[™], Campath[™], Mylotarg[™],
 Zevalin[™], Bexxar[™])
- Blocking receptor (Herceptin[™])
- Attacking vasculature (Avastin[™], Erbitux[™])
- Immunology & Transplantation
 - TNF-alpha (Humira[™], Enbrel[™])
 - Depletion of T cell (Orthoclone OKT3™, Zenapax™, Simulect™)
- Anti-infective (Synagis[™])



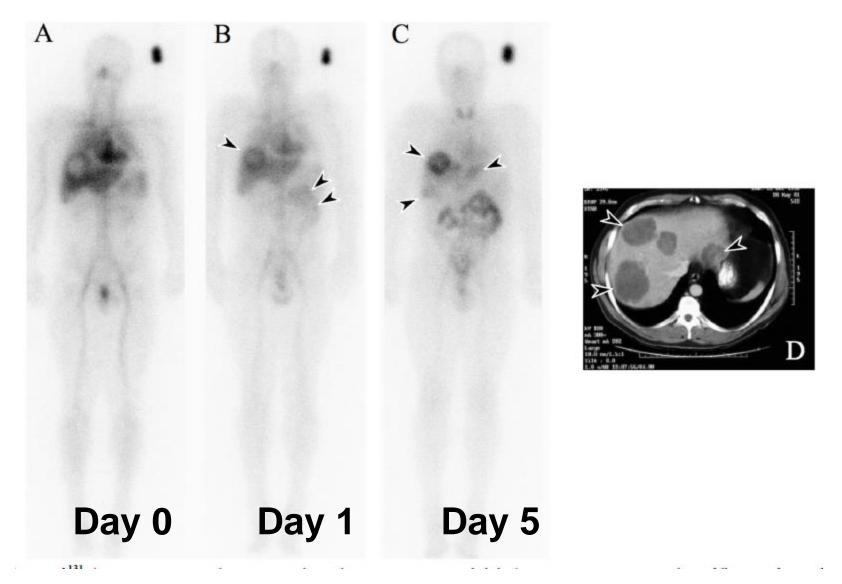
b Depletion




d Cell signalling

CD3 CD4

http://www.aafp.org/afp//AFPprinte



Mechanisms of tumor cell killing by antibodies

Cancer Immunity (1 May 2012) Vol. 12, p. 14

Direct tumor cell killing									
 cell surface receptor agonist activity (leading to apoptosis) cell surface receptor antagonist activity (inhibit signaling, reduce proliferation, induce apoptosis) cell surface enzyme neutralization (leading to signaling abrogation) conjugated antibody, delivery of payload (drug, toxin, radio-isotope, leading to cell death) 									
Immune-mediated tumor cell killing									
 induction of phagocytosis complement activation antibody-dependent cell-mediated cytotoxicity (ADCC) target gene-modified T cells activate T cells (through inhibition of T cell inhibitory receptors, such as CTLA 4, or antibody-mediated cross presentation of antigen to dendritic cells) 									
Vascular and stromal ablation									
 vessel receptor antagonism or ligand trap stromal cell inhibition conjugated antibody, delivery of payload 									

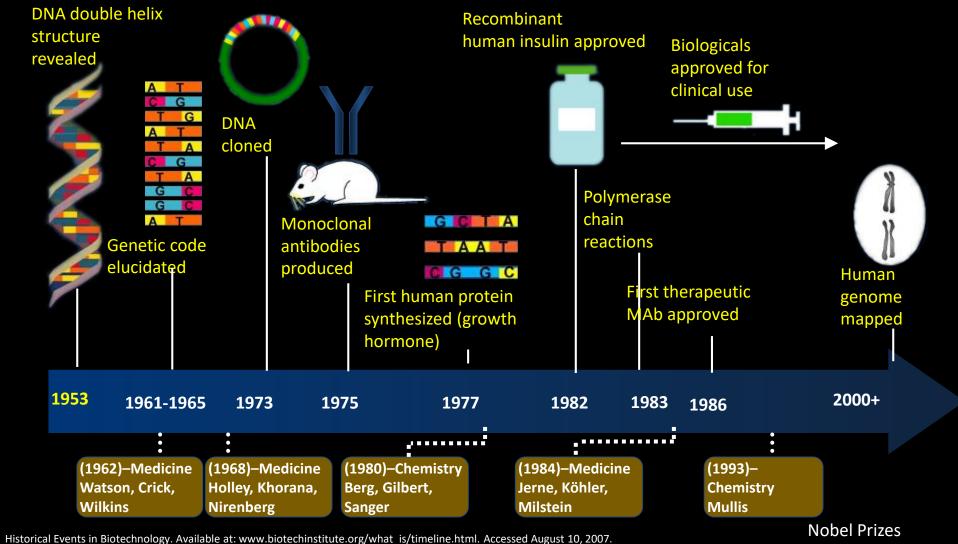
Biodistribution of 131I-huA33 in a patient with metastatic colorectal carcinoma

Monoclonal antibodies currently FDA-approved in oncology

Antibody	Target	FDA-Approved indication	Mechanism of action		
Trastuzumab (Herceptin [®]) humanized IgG1	HER2 (ErbB2)	HER2-positive breast cancer, as single agent or in combination with chemotherapy for (i) adjuvant or (ii) palliative treatment; HER2-positive gastric or gastroesophageal junction carcinoma, as first-line treatment in combination with cisplatin and capecitabine/5-FU	Inhibition of HER2 signaling; ADCC		
Bevacizumab (Avastin [®]) humanized IgG1	VEGF	For the palliative treatment of colorectal cancer, non-squamous non-small cell lung cancer, glioblastoma, or renal cell carcinoma	Inhibition of VEGF signaling		
Cetuximab (Ĕrbitux [®])* chimeric human/murine IgG1	EGFR (ErbB1)	In combination with radiation therapy for the initial treatment of locally or regionally advanced squamous cell cancer of the head and neck (SCCHN); As a single agent for SCCHN patients with whom prior platinum-based therapy has failed; Palliative treatment of pre-treated metastatic EGFR-positive colorectal cancer	Inhibition of EGFR signaling; ADCC		
Panitumumab (Vectibix [®])* human IgG2	EGFR (ErbB1)	As a single agent for the treatment of pre-treated EGFR-expressing, metastatic colorectal carcinoma	Inhibition of EGFR signaling		
Ipilimumab (Yervoy [®]) IgG1	CTLA-4	For the treatment of unresectable or metastatic melanoma	Inhibition of CTLA-4 signaling		
Rituximab (Rituxan [®] and Mabthera [®]) chimeric human/murine IgG1	CD20	For the treatment of CD20-positive B cell non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL), and for maintenance therapy for untreated follicular CD20-positive NHL	ADCC; direct induction of apoptosis; CDC		
Alemtuzumab (Campath [®]) humanized IgG1	CD52	As a single agent for the treatment of B cell CLL	Direct induction of apoptosis; CDC		
Ofatumumab (Arzerra [®]) human IgG1	CD20	Treatment of patients with CLL refractory to fludarabine and alemtuzumab	ADCC; CDC		
Gemtuzumab ozogamicin (Mylotarg [®]) humanized IgG4	CD33	For the treatment of patients with CD33-positive acute myeloid leukemia in first relapse who are 60 years of age or older and who are not considered candidates for other cytotoxic chemotherapy (withdrawn from use in June 2010)	Delivery of toxic payload, calicheamicin toxin		
Brentuximab vedotin (Adcetris [®]) chimeric IgG1	CD30	For the treatment of relapsed or refractory Hodgkin lymphoma and systemic anaplastic lymphoma	Delivery of toxic payload, auristatin toxin		
⁹⁰ Y-Ibritumomab Tiuxetan (Zevalin [®]) murine IgG1	CD20	Treatment of relapsed or refractory, low-grade, or follicular B cell NHL; Previously untreated follicular NHL in patients who achieve a partial or complete response to first-line chemotherapy	Delivery of the radio-isotope yttrium-90		
¹³¹ I-Tositumomab (Bexxar [®]) murine IgG2	CD20	Treatment of patients with CD20 antigen-expressing relapsed or refractory low-grade, follicular, or transformed NHL	Delivery of the radio-isotope iodine-131; ADCC; direct induction of apoptosis		

Antibodies vs. Conventional drugs

• Large size

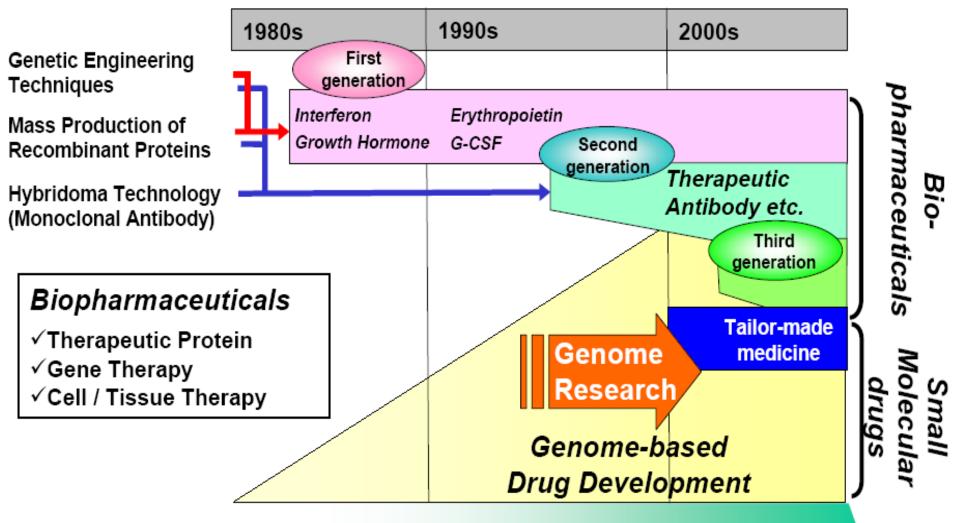

Unique biological activities Restricted tissue distribution Longer half life

Common structure

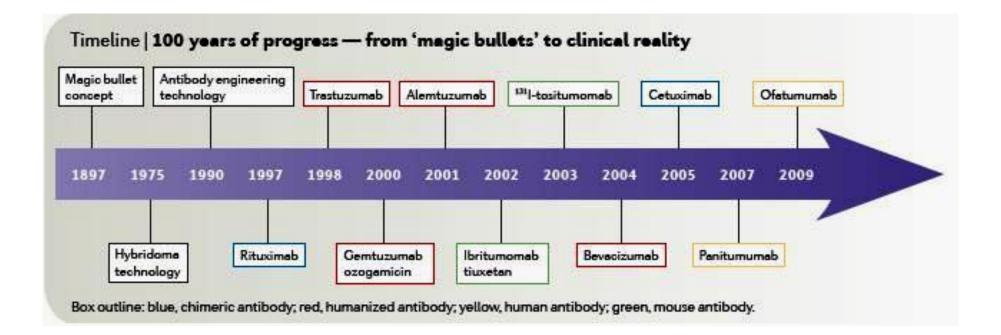
Generic methodology Idiosyncrasies

- Potentially immunogenic
 - Anti-idiotype therapy Anti-globulin responses

Evolution of Biotechnology



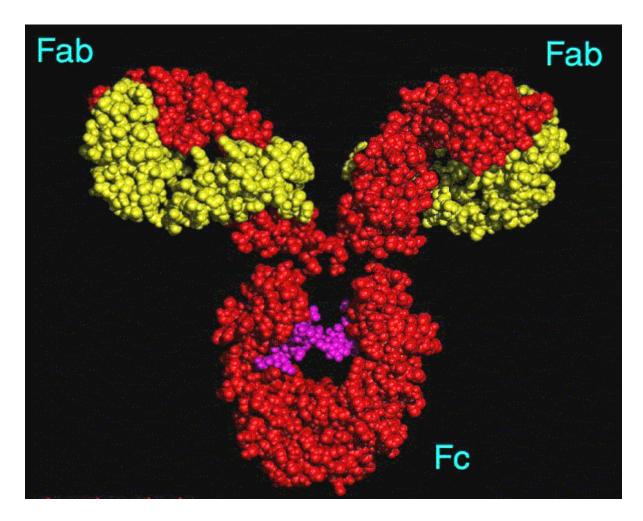
All Nobel Laureates. Available at: www./nobelprize.org. Accessed August 10, 2007


(Year Awarded)

Development of Genomic/Bio-Pharmaceuticals

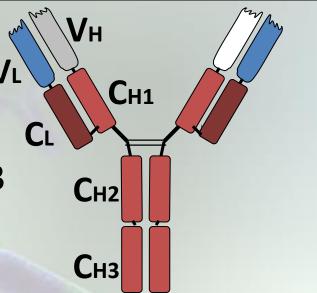
Bio-Pharmaceuticals: pharmaceuticals produced using bio-technology

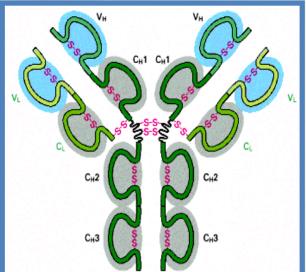
Molecular targeting medicines

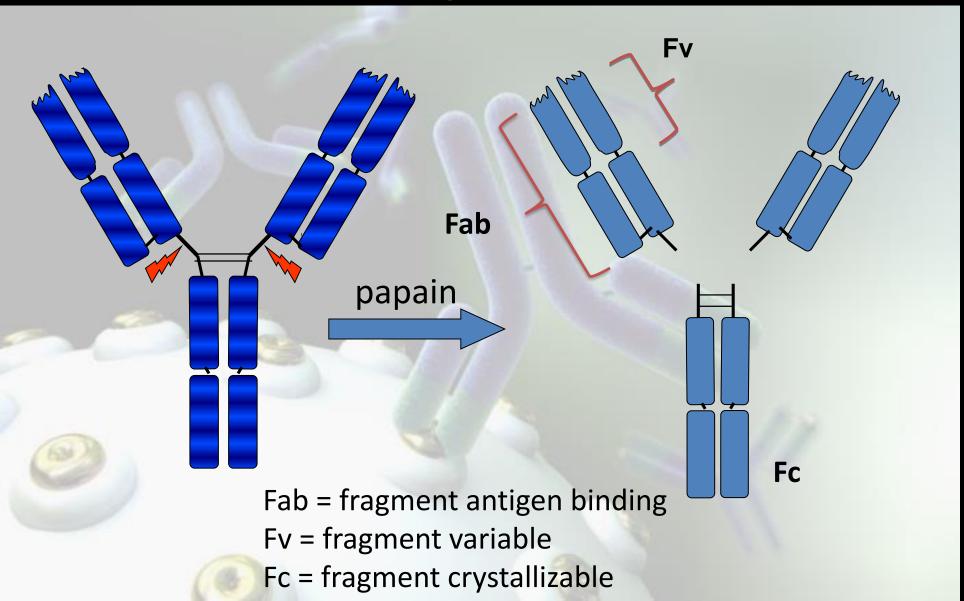


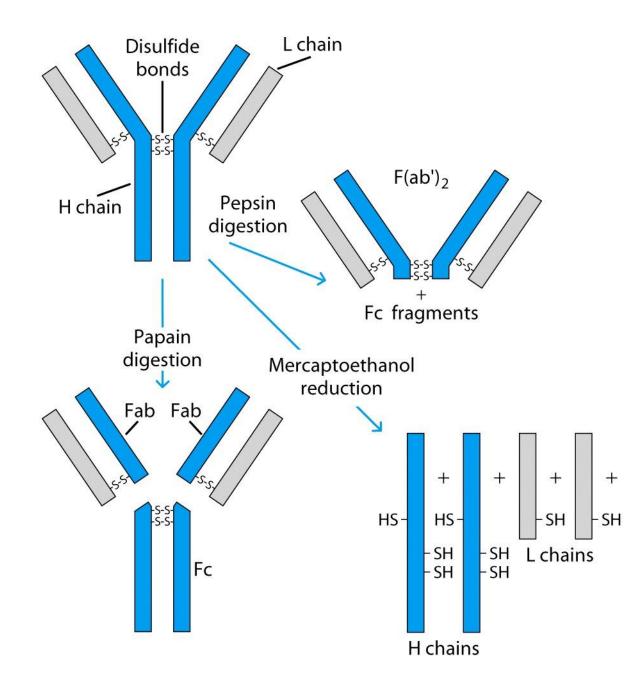
First monoclonal therapeutic

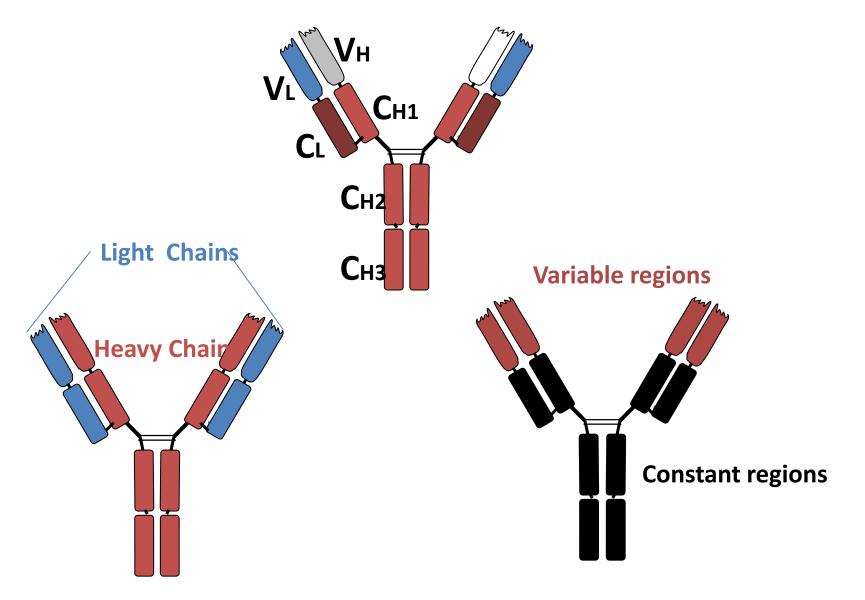
- T cells responsible for transplant rejection.
- Monoclonal target: T cells. Eliminates all T cells.
- Muromonab CD-3 (OKT3): (CD3 is a component of the T cell receptor).


Immunosuppressive therapy.

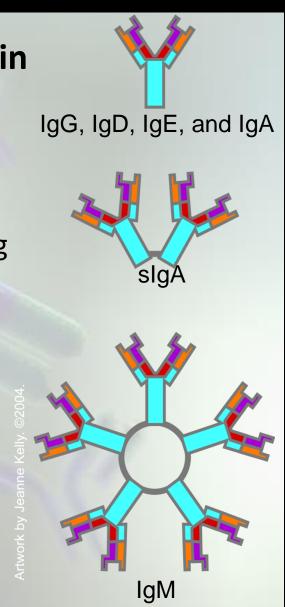

Antibody (Immunoglobulin; IgG) Structure & Functions


Structural features of IgG


- Y-shaped molecules
- Composed of a total of 4 protein chains
 - 2 heavy chains with 1 variable and 3 constant domains
 - 2 light chains with 1 variable and 1 constant domain
- Stem (Fc) of Y = 2x2 heavy chain constant domains
- Each arm (Fab) of Y = 1 variable and 1 constant domain from heav chain and 1 entire light chain.

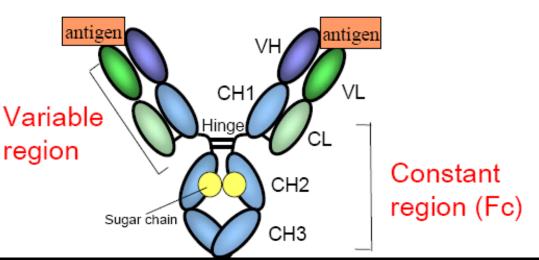


Antibody Structure

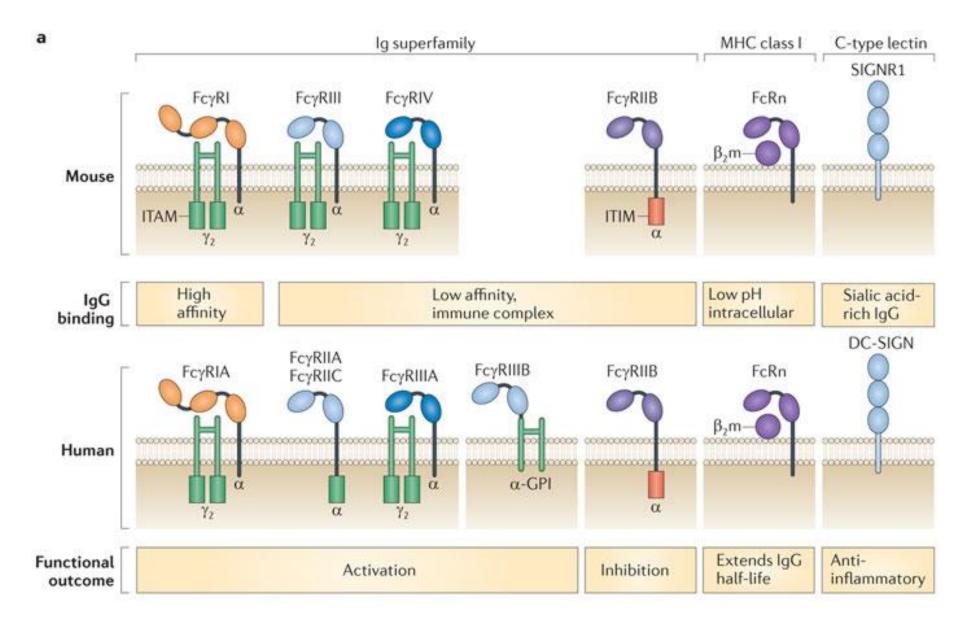


Antibody Domain Structure

Antibodies


- Five classes based on type of heavy chain
 - IgA
 - IgD
 - IgE
 - IgG derived from B-cells, most abundant Ig
 - IgM
- IgG has two primary functions
 - Bind foreign antigens
 - Eliminate or inactivate antigen

Characteristic of Human Antibody by Class


Structure of Immunoglobulin IgG1

Most of the therapeutic antibodies are IgG1

Class/Sub	Class/Subclass		IgG1	IgG2	IgG3	IgG4	IgM	IgA1	IgA2	sIgA	IgD	IgE
H chain			γ1	γ2	γ3	γ4	μ	α1	α2	α1/α2	δ	ε
Molecular weight (kDa)			146	146	170	146	970	160	160	385	184	188
Serum concentration (mg/ml)			9	3	1	0.5	1.5	3	0.5	0.05	0.03	0.00005
Half-life (day)			21	20	7	21	10	6	6	7	3	2
Complement binding			++	+	+++	_	+++	-	-	-	Ι	-
Fc receptor binding	FcγR	I, II, III		(IIa)	I, II, III	I	-	-	-	-	Ι	-
	FcαR	-		Ι	-	Ι	-	+++	+++	+++	Ι	-
	FcεR	-		-	-	-	-	-	-	-	-	I, II
Placenta permeability			+	+	+	+	-	-	-	-	-	-

The family of mouse and human FcγRs.

Characteristics of Antibody

- Natural scaffold
- Neutralization (extreme specific binding properties)
 - High affinity \rightarrow Low concentration needed
 - Less cross reactivity \rightarrow Less side effect --
 - 2 binding site per molecule \rightarrow High avidity
- Long plasma half-life (IgG ~ 21 days)
 - Less frequent administration needed
- Activate consequence immune response via FcR
 - Complement acitvation
 - Antibody-dependent cellular cytotoxicity (ADCC)
- Induce apoptosis

How do antibodies work?

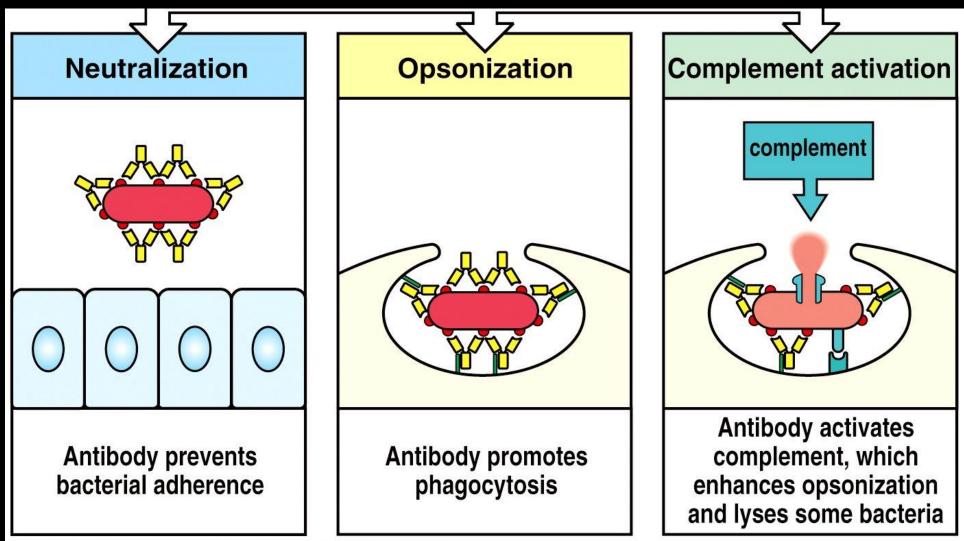
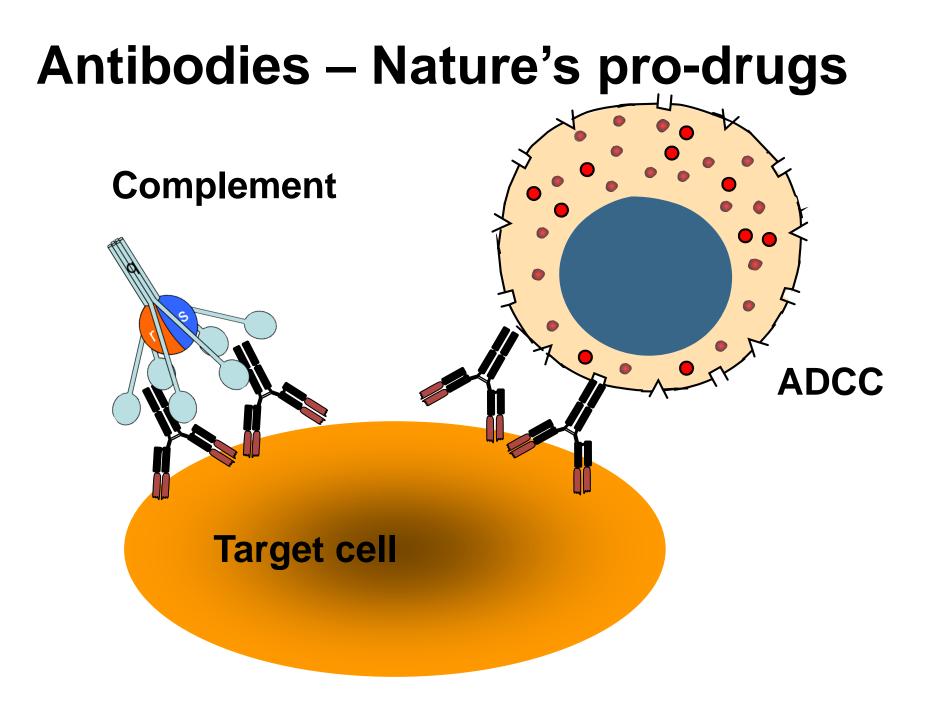
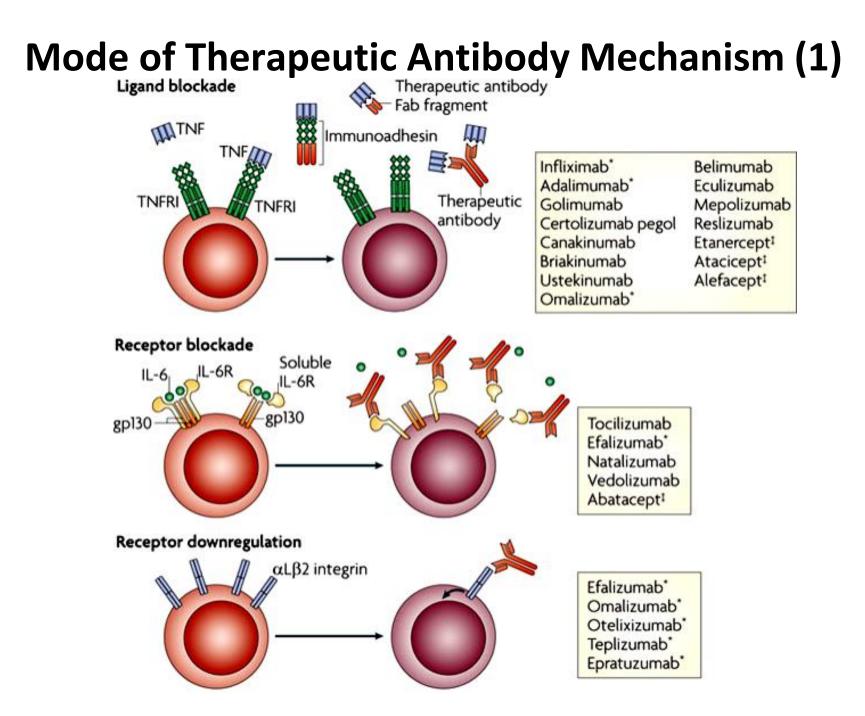
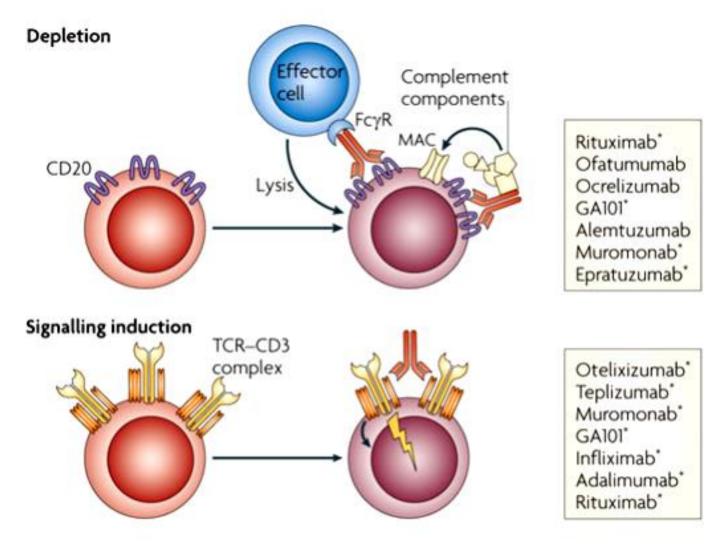
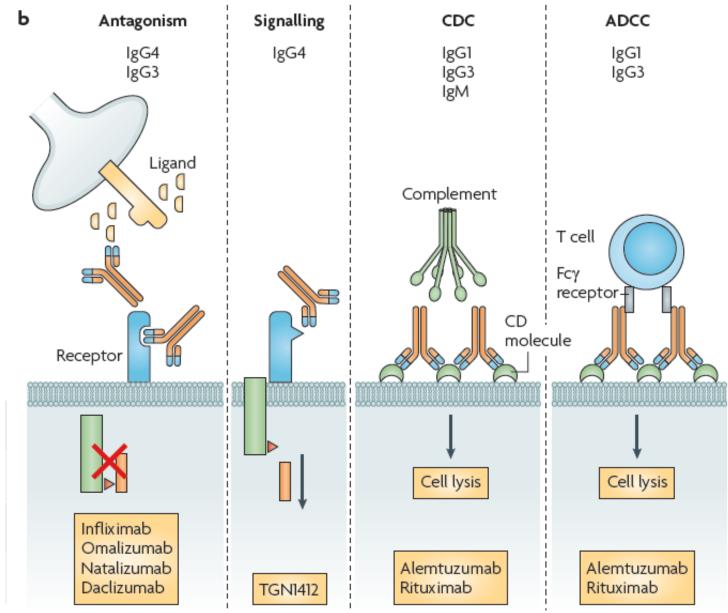





Figure 9-1 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)



Mode of Therapeutic Antibody Mechanism (2)

Nature Reviews

Functions of mAbs

Poly- and Mono- Clonal Antibodies

Polyclonal antibody

- Antigens possess multiple epitopes
- Serum antibodies are heterogeneous,
 - To increase immune protection in vivo
 - To reduces the efficacy of antiserum for various in vitro uses
- To response facilitates the localization, phagocytosis, and complement-mediated lysis of antigen
 - To have clear advantages for the organism in vivo

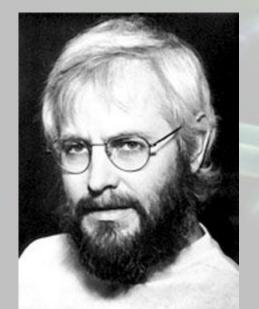
Monoclonal antibody

- Derived from a single clone, specific for a single epitope
- For most research, diagnostic, and therapeutic purposes

Antibody Production

- Classical Method (preparation for antiserum)
 - Immunization of laboratories animal with antigen (both in pure form or complex form)
 - Determination of titre after 1-3 immunizations
 - Antiserum is collected
 - Problem ::
 - contains undesired substances,
 - provides a very small amount of usable antibody.

Problems with polyclonal antisera


- Lack of Reproducibility Each batch could be different
- Complex Mixture

Multi-specific antibodies Potential contaminants (eg viruses)

Immunogenicity

Animal proteins induce immune response; eg.HAMA (Human anti-murine antibody)Loss of efficacy and serum sickness

The Nobel Prize in Physiology/Medicine 1984

Georges J.F. Köhler César Milstein Niels K. Jerne "for theories concerning the specificity in development and control of the immune system and the discovery of the principle for production of monoclonal antibodies"

Køhler and Milstein (1975)

- Monoclonal antibody technology
- Immortal cells producing a single antibody of defined specificity in unlimited amounts

Continuous cultures of fused cells secreting antibody of predefined specificity

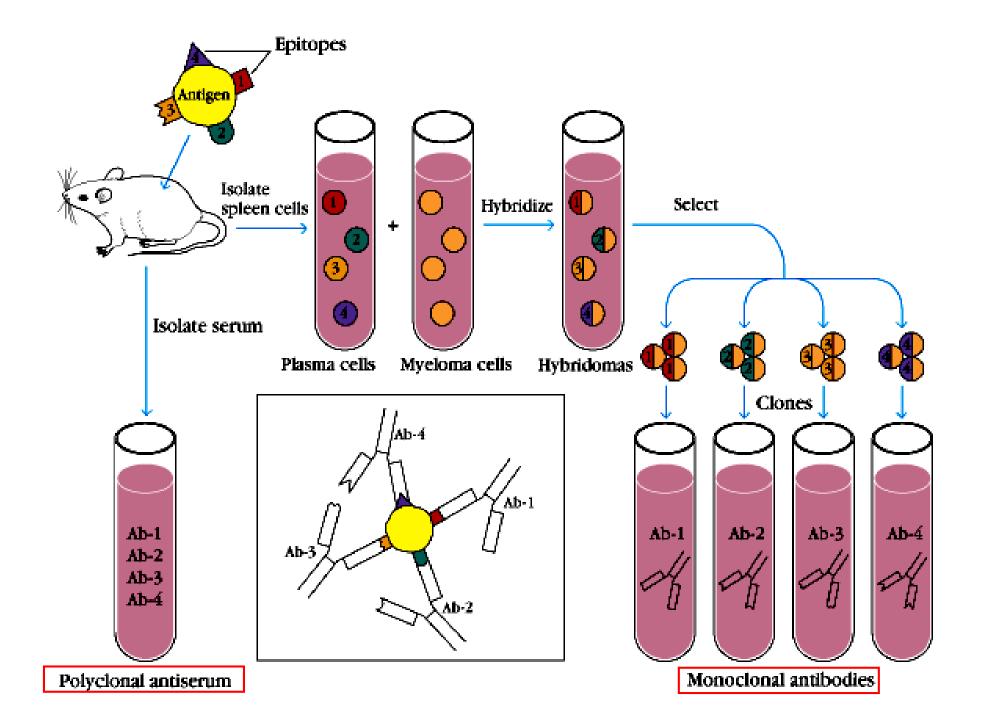
The cells used in this study are all of BALB/c origin and the hybrid clones can be injected into BALB/c mice to produce solid tumours and serum having anti-SRBC activity. It is possible to hybridise antibody-producing cells from different origins^{4,5}. Such cells can be grown *in vitro* in massive cultures to provide specific antibody. Such cultures could be valuable for medical and industrial use.

> G. KÖHLER C. MILSTEIN

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

Received May 14; accepted June 26, 1975.

Nature. 1975 Aug 7;256(5517):495-7.


Antibody Production

Monoclonal antibody technology

produce large amounts of pure antibodies by cells (hybridoma) that grow continually in cell culture
antibodies are called monoclonal because they come from only one type of cell,

– Hybridoma = myeloma + plasma cells

Immortal cells with antibody producing properties

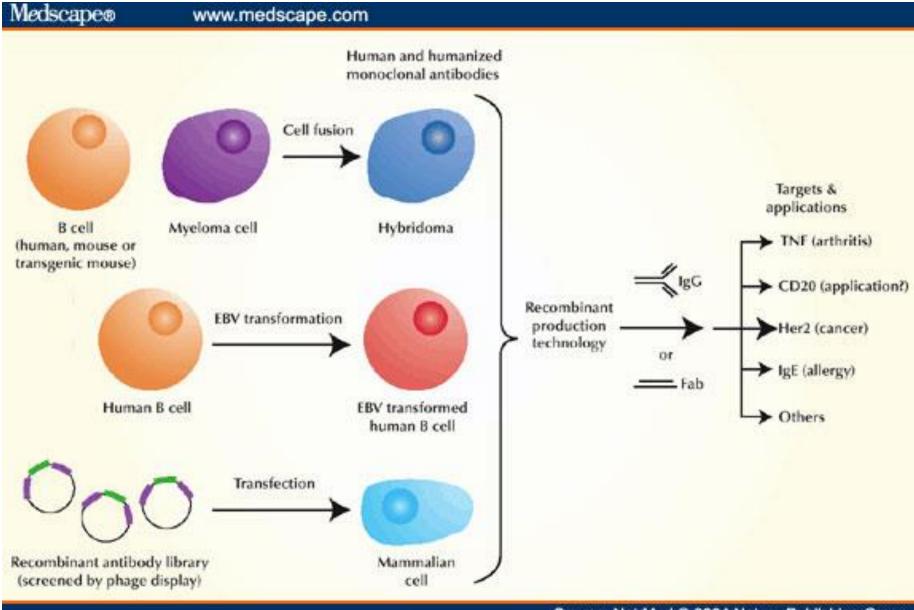
Production of monoclonals via hybridoma technology

Ascites production

- Injecting hydridoma cells into the peritoneal cavity of mice
- Up to 15 mg/ml of antibody yield
- Early monoclonal antibody preparations e.g OKT-3
- Contaminated by mouse proteins

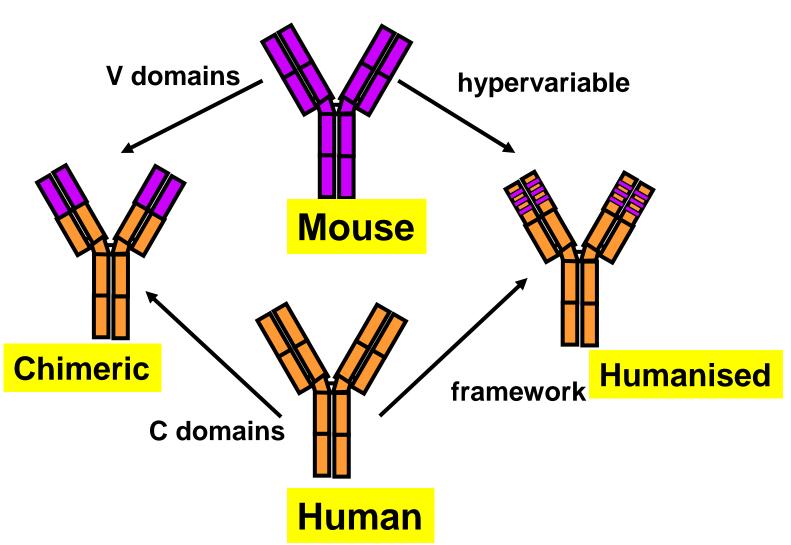
Direct animal cell culture

- Fermentation volumes in excess of 1000 liters can be used, which yield 100 g or more final product
- Fermentation yields antibody concentration of 0.1-0.5 mg/ml



Monoclonal Technology Evolution

 Fusion of Mouse lymphocyte and myeloma (Kohler & Milstein, 1975; never patented) → therapeutic use in 1980s


Chimera Antibody (chimeric vs. humanized)

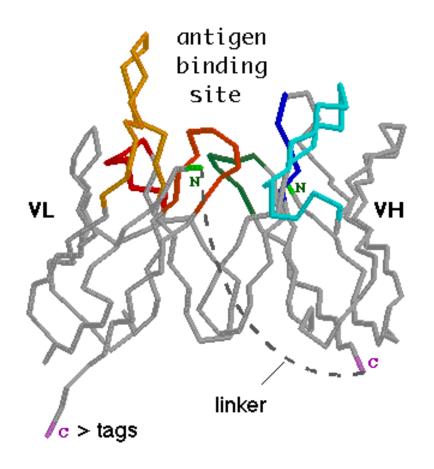
Fully human Antibody

Source: Nat Med © 2004 Nature Publishing Group

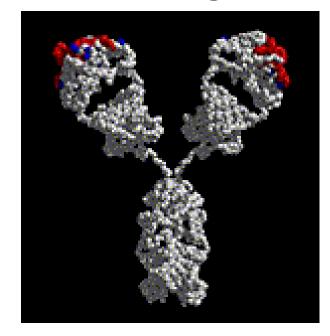
Format of Immunoglobulins

Genetic engineering of antibodies

Reduce immunogenicity

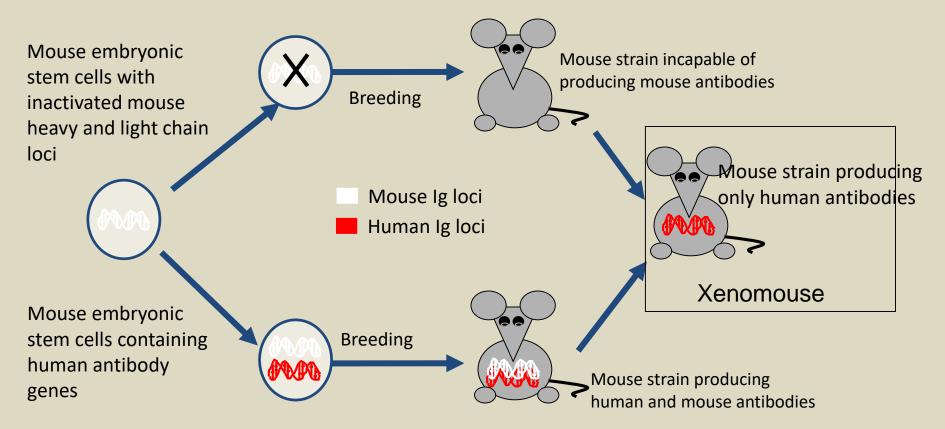

Chimeric, Humanised, Phage, Transgenic

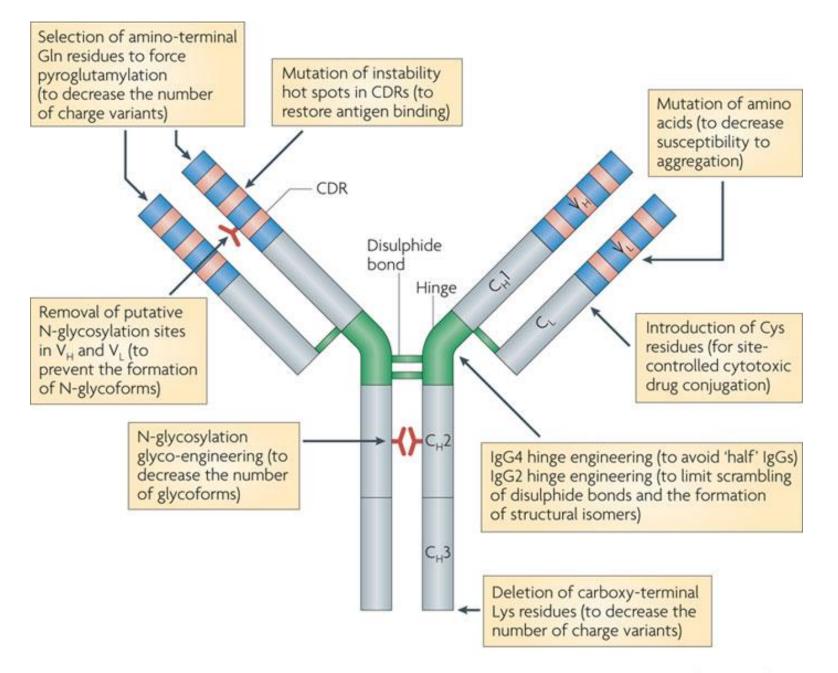
- *Modify effector function* Aglycosyl, non-FcR binding
- **Create fragments of complexes** Hybrids, Bispecific

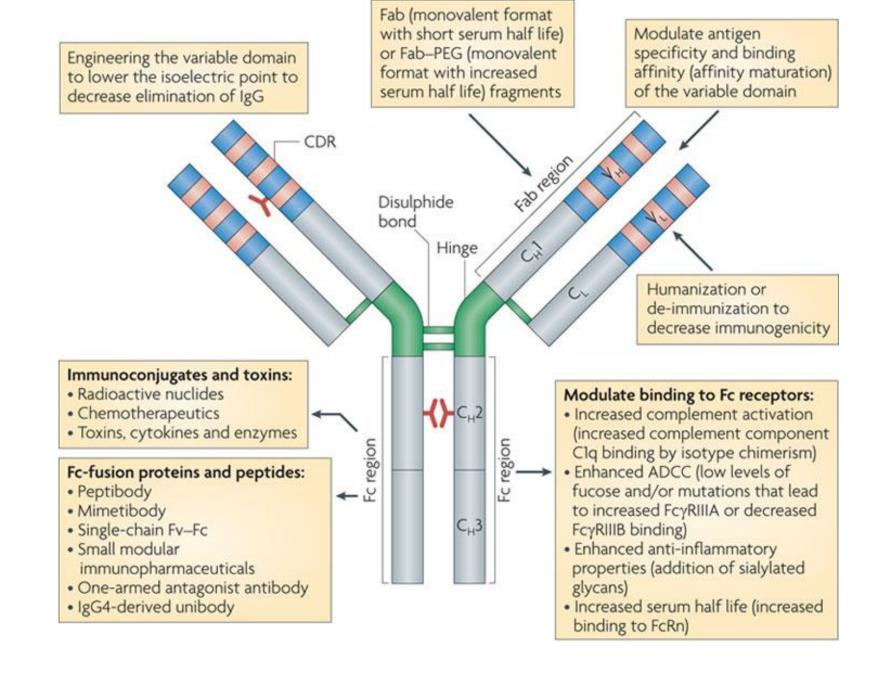

Improve stability Human IgG4

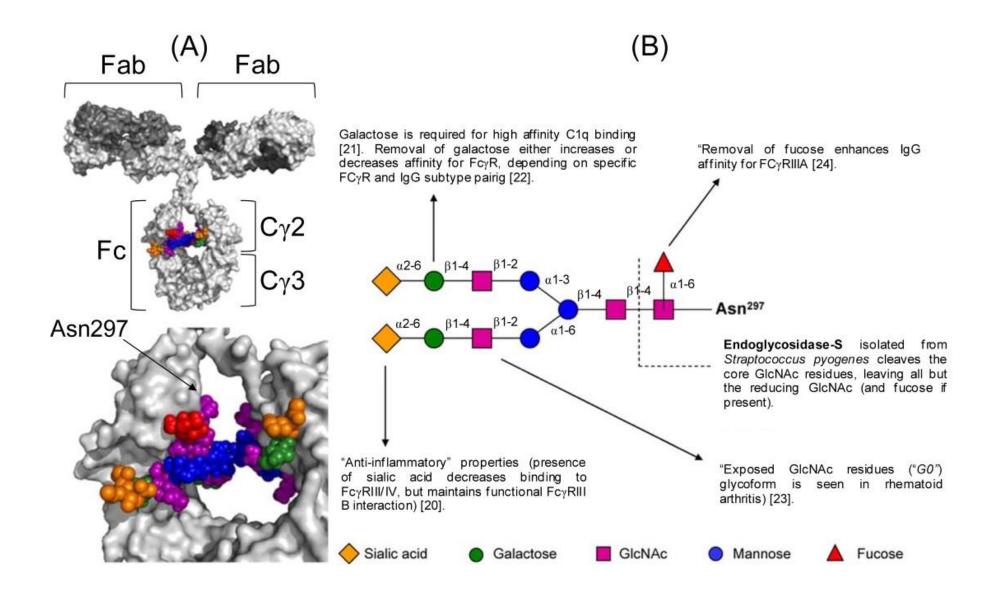
Humanised Antibodies

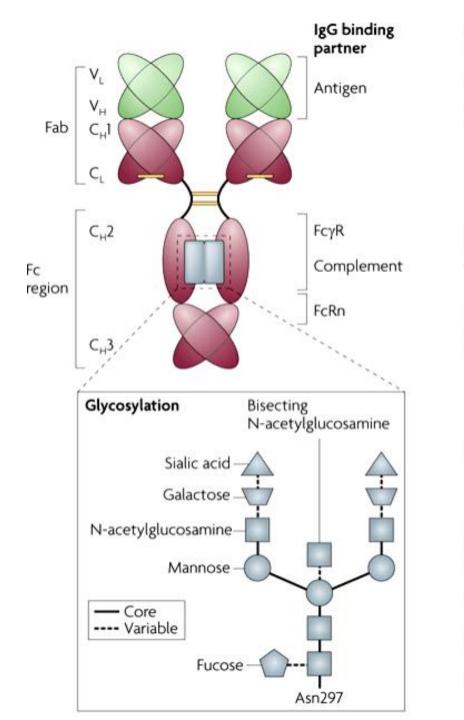
Amino Acid Backbone




Allows specificity Allows effector functions Less immunogenic




Creation of Fully Human mAbs From Transgenic Mice


Replace murine immunoglobulin (Ig)G genes with human IgG genes

Protein strategies for modifying interactions

Mutate V domain sequences using display libraries and/or rationale design

Potential impact of modifying interaction

Altered binding affinity or specificity

↑ or ↓ ADCC Mutate Fc sequence using display libraries and/or rationale design; ↑ or ↓ ADCP select IgG isotype

Mutate Fc sequence using display libraries and/or rationale design

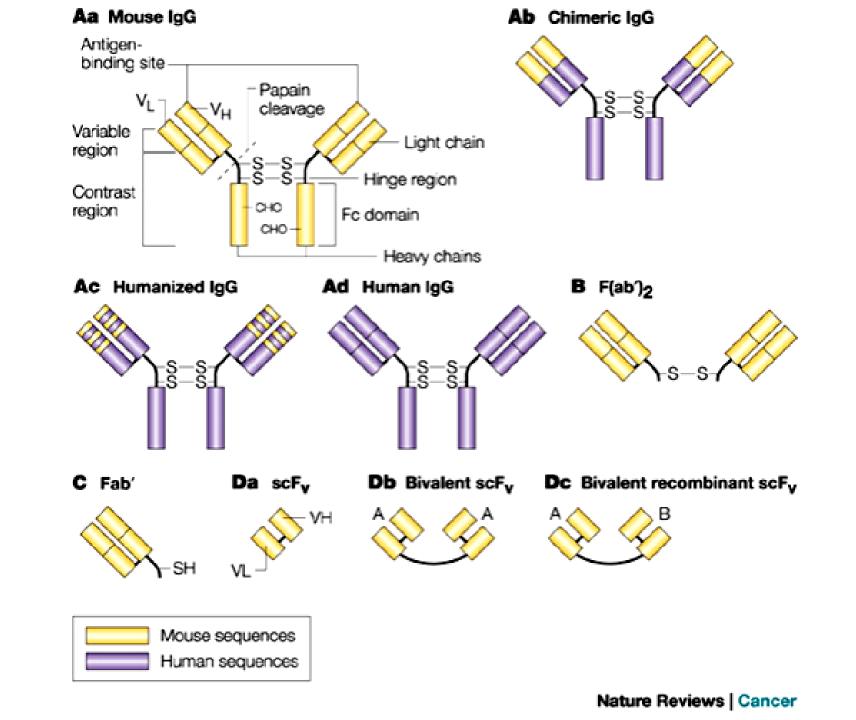
↑ or ↓ CDC

↑ or ↓ half-life

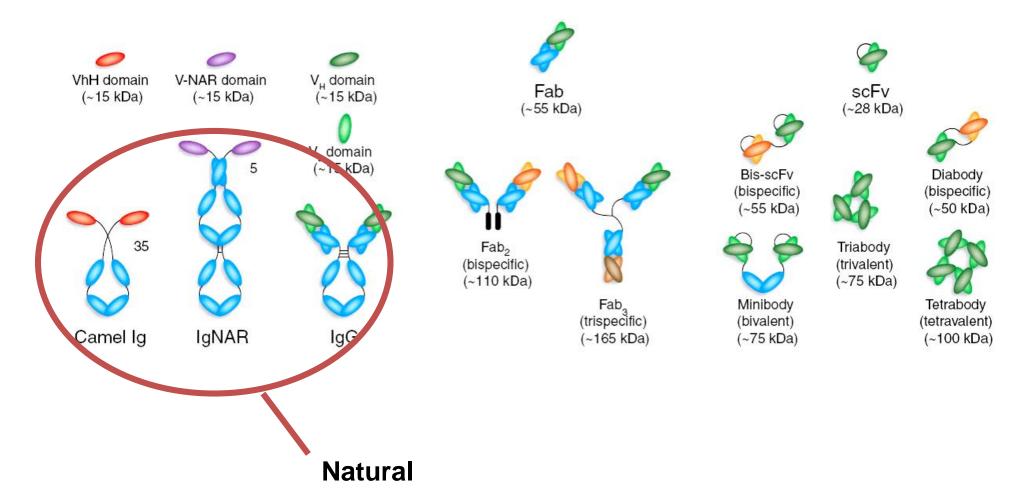
Antibody fragment lacking Fc

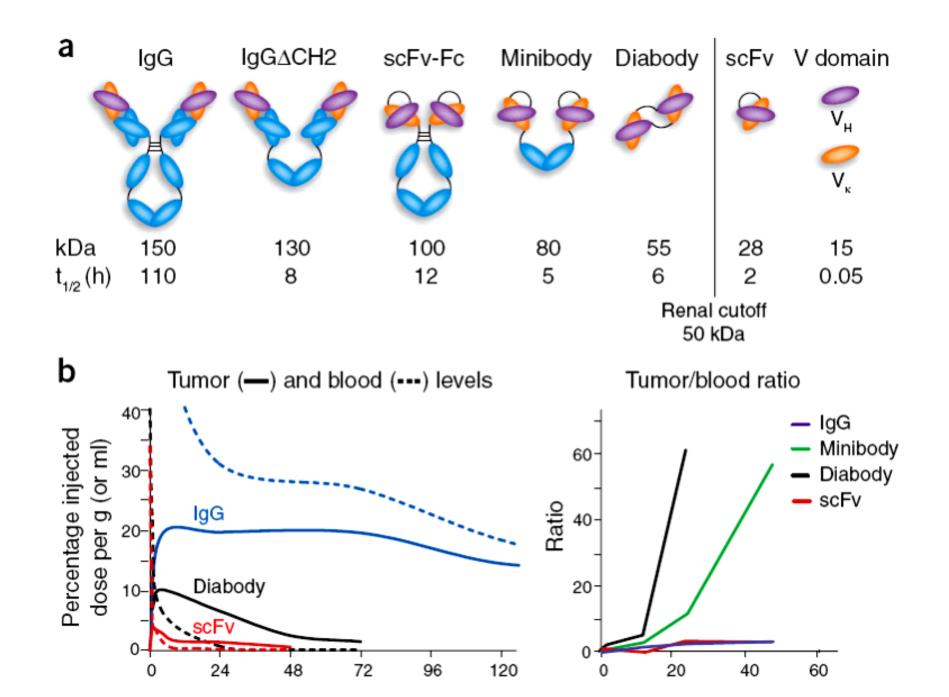
↓ Half-life, ↓ CDC. ↓ ADCC and ↓ ADCP

Glycosylation strategies for modifying FcyR and complement interactions


 \downarrow ADCC, \downarrow ADCP and \downarrow CDC Aglycosylation Bisecting N-acetylglucosamine 1 ADCC Non-fucosylation 1 ADCC

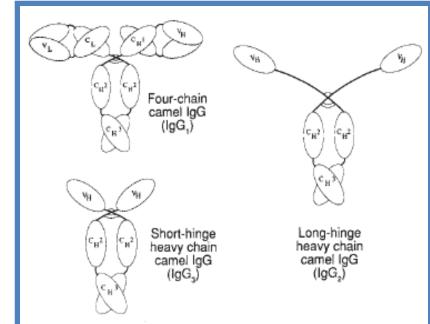
Monoclonal Antibody (mAb) Nomenclature

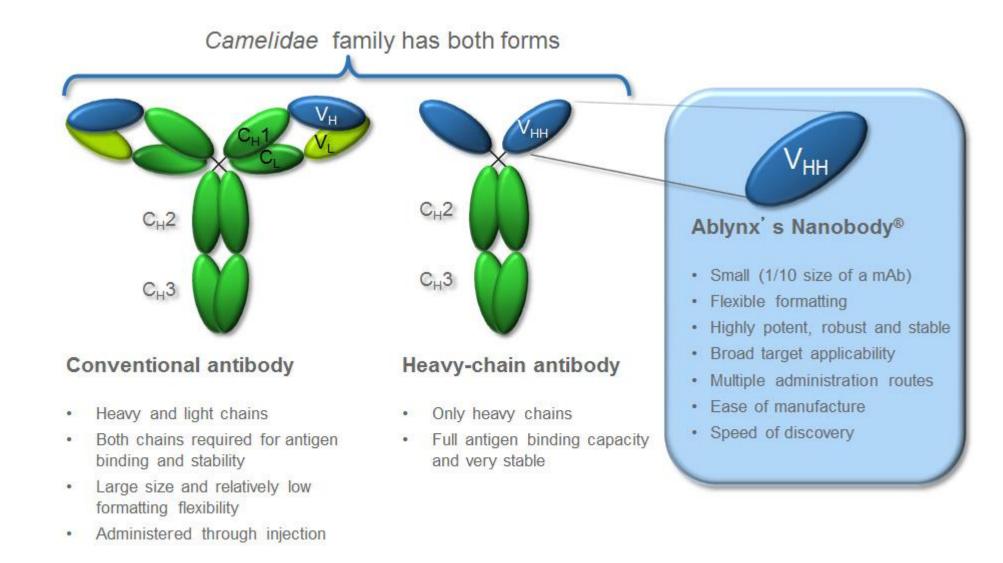

Prefix	Та	rget or Disease State		Source	Suffix
varies	-0(s)-	bone	-U-	human	-mab
	-vi(r)-	viral	-0-	mouse	
	-ba(c)-	bacterial	-a-	rat	
	-li(m)-	immune	<i>-e-</i>	Hamster	
	-le(s)-	infectious lesions	- <i>i</i> -	Primate	
	-ci(r)-	cardiovascular	-xi-	Chimeric	
	-mu(l)-	musculoskeletal	-zu-	Humanized	
	-ki(n)-	interleukins	-ахо-	rat/murine hybrid	
	-co(l)-	colonic tumor			
	-me(l)-	melanoma			
	-ma(r)-	mammary tumor	Exam	nple:	
	-go(t)-	testicular tumor		. / / / .	
	-go(v)-	ovarian tumor	P	harma/lim/u/mab	
	-pr(o)-	prostate tumor			\
	-tu(m)-	miscellaneous tumor	Prefix: Variabl	' Target: Source: Suffix: e Immune Human Mono	: oclonal antibody
	-ne(r)-	nervous system			
	-tox(a)-	toxin as target			
	-fu(ng)-	fungal			


Available at: www.ama-assn.org/ama/pub/category/13280.html. Accessed August 10, 2007.

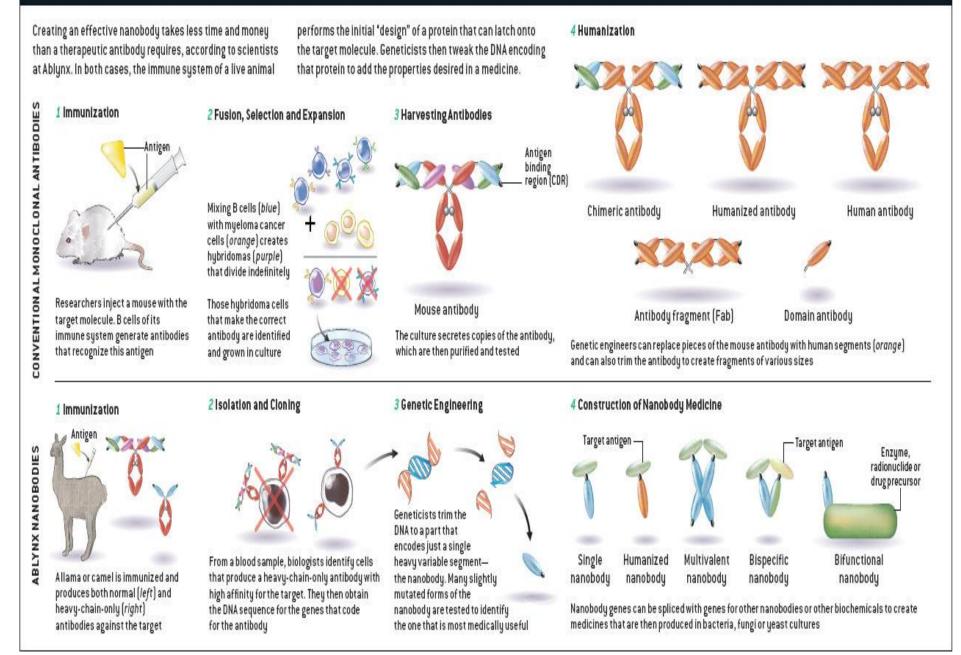
Antibody Engineering

Different Antibody Format: Natural & Engineered

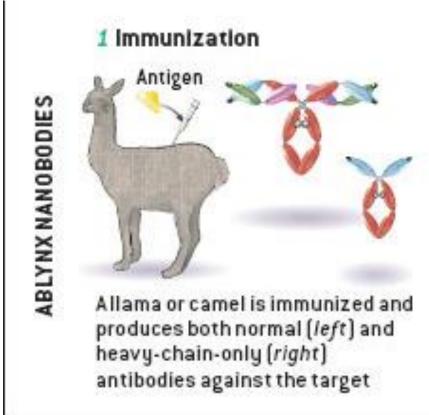




Nanobodies


- 1989 Raymond Hamers
- Discovered in camels
- Completely lack the light chain!
- Same antigen affinity as their four-chain counterparts
- Structure makes them more resistant to heat and pH
 - May lead to development of oral nanobody pills

CONSTRUCTING ANTIBODIES AND NANOBODIES

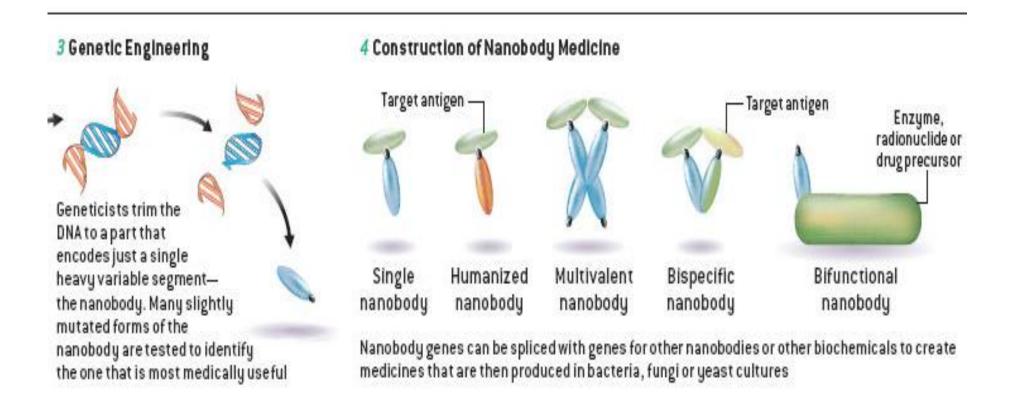


ANATOMY OF AN ANTIBODY

The millions of kinds of human antibodies all share the same basic structure: two larger (or heavy) protein chains linked with two smaller (or light) chains. The pair of variable segments at the tips of the arms are unique for each model of antibody and determine the target to which it will bind. A nanobody is the variable part of a camel antibody that lacks light chains; it is about one tenth the size of an antibody.

Construction of Nanobodies (1)

2 Isolation and Cloning

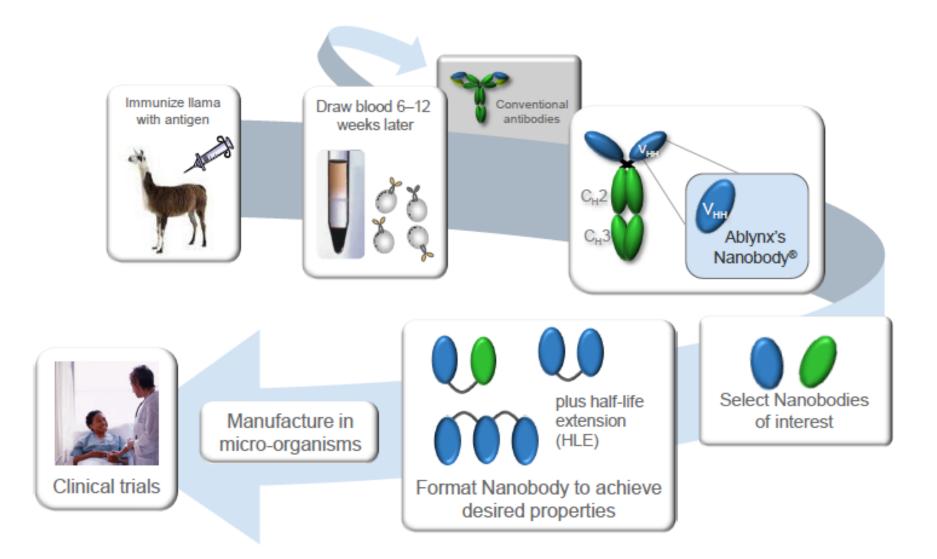


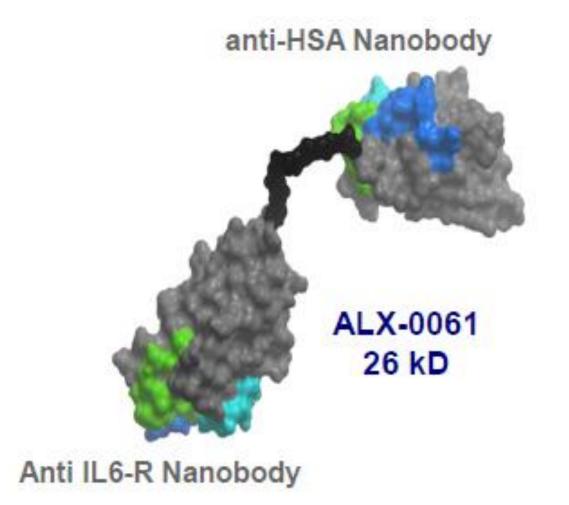
From a blood sample, biologists identify cells that produce a heavy-chain-only antibody with high affinity for the target. They then obtain the DNA sequence for the genes that code for the antibody

Nanobodies

W. Wayt Gibbs Scientific American **293**, 78 - 83 (2005)

Construction of Nanobodies (2)




Nanobodies

W. Wayt Gibbs Scientific American **293**, 78 - 83 (2005)

Nanobody discovery process

Designer antibodies for human therapy (1)

Design goal S	Strategies	Potential benefits				
Immunogenicit	Immunogenicity					
Minimize risk R P a e ir m	Ainimize non-human sequence chimerization or humanization of nouse antibody, use of human nonoclonal antibody, use of human germline sequences); design to emove T-cell epitopes; minimize presence of aggregated or misfolded intibody (purification, formulation,	Increased efficacy; improved safety; more efficient effector functions; longer terminal half-life				

Designer antibodies for human therapy (2)

Design goal	Strategies	Potential benefits		
Antigen-binding specificity				
Improve selectivity for antigen	Select from display libraries; screen antibody panel; use structure-based design	Prerequisite for targeted therapy		
Increase species crossreactivity	Select from display libraries; screen antibody panel; use structure-based design	Facilitates preclinical development (efficacy testing, toxicology)		
Antigen-binding affinity				
Increase	Select from display libraries; use structure-based design	Increased efficacy; reduced dose or frequency of administration; increased potency of ADCC		
Decrease	Select from display libraries; use structure-based design	Increased localization to tumours; more homogeneous distribution in tumours		

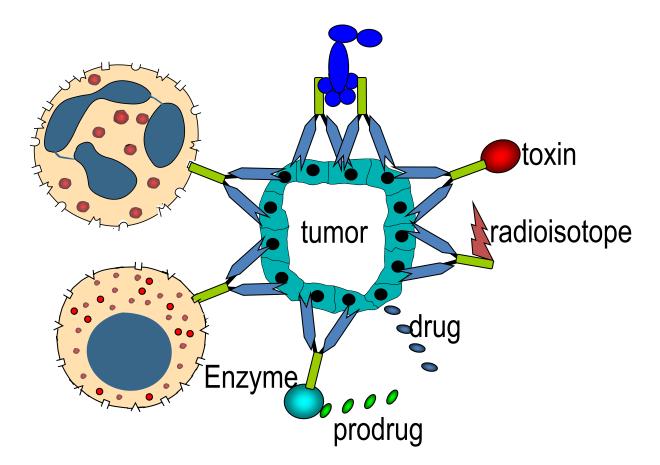
Designer antibodies for human therapy (3)

Design goal	Strategies	Potenti	Potential benefits	
Biological activitie	s associated with variable domains	1		
Isolate antibodies with potent activities	Screen antihody nanel	Increased efficacy; reduced dose or frequency of administration		
Improve activities of existing antibodies		Increased efficacy; reduced dose or frequency of administration		
Effector functions				
Improve or tailor	Screen human IgG panel; engineer Fc region (point nutations, glycan modifications); increase antigen- binding affinity		Increased efficacy	
Avoid or abolish use IgG that lacks disulphide bonds in hinge region; use IgG with an aglycosylated Fc region; use antibody fragments		Reduced adverse events		

Designer antibodies for human therapy (4)

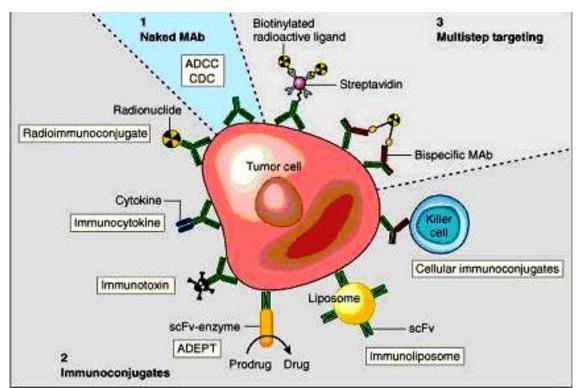
Design goal	Strategies	Potential benefits		
Pharmacokinetics				
Reduce plasma half-life	Use antibody fragments; use IgG with impaired affinity for FcRn	Less whole-body exposure to antibody; improved target-to- non-target ratios		
Increase plasma half-life	Use IgG with increased affinity for FcRn (at pH 6.0); modify antibody fragments (PEGylation, binding to molecules with a long half-life such as IgG and serum albumin)	Increased plasma concentrations might improve localization to target; increased efficacy; reduced dose or frequency of administration		
Internalization				
Decrease efficiency	Screen antibody panel; choose target antigen accordingly	Efficient effector functions		
Increase efficiency	Select antibodies that can internalize from display libraries; screen antibody panel with drug-conjugated crosslinking antibody	Improved efficacy for antibody?drug conjugate or immunoliposomes		

Designer antibodies for human therapy (5)

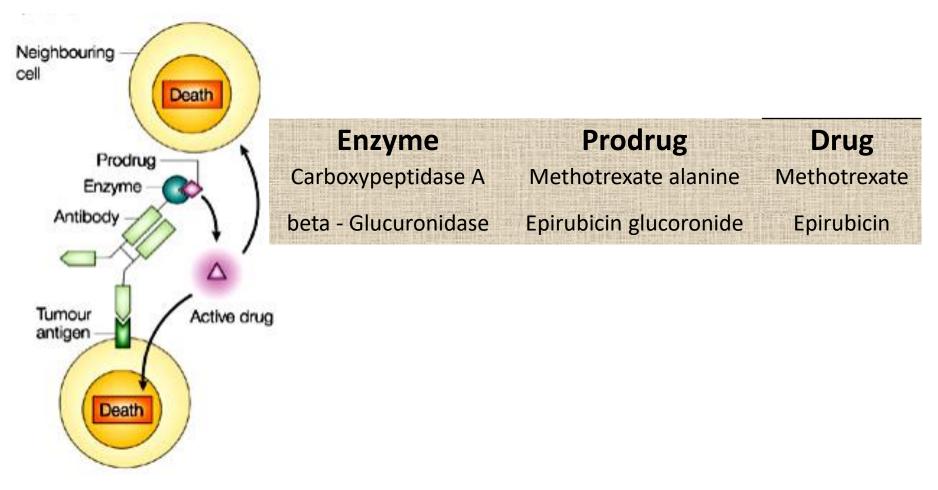

Design goal	Strategies	Potential benefits		
Chemical, proteolytic and thermodynamic stability				
Increase	Design to remove 'problem sites'; select from display libraries; use structure-based design	Maintains potency; longer shelf life, improved expression yields; longer terminal half-life in vivo; reduced risk of immunogenicity; improvedin vivo localization to tumour		
Other biophysical properties: solubility and folding kinetics				
Increase or improve	Select from display libraries; use structure-based design	Improved expression yields; reduced risk of immunogenicity		
ADCC, antibody-dependent cell-mediated cytotoxicity; PEG, polyethylene glycol.				

Antibodies for cell depletion

Natural mechanisms (natural) Complement ADCC **Direct Induction of** apoptosis **Cytotoxic T cells**

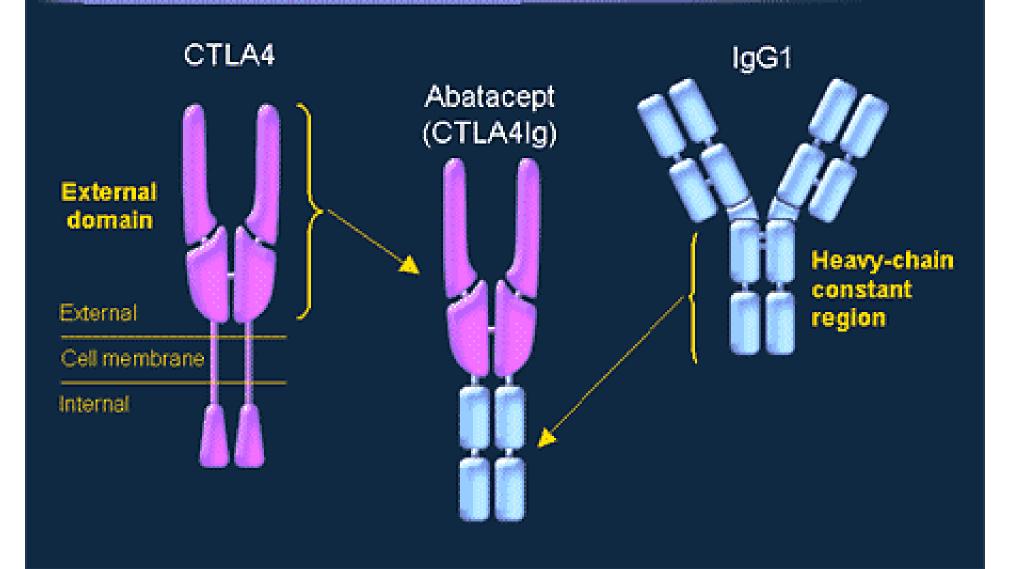

Artificial mechanisms (conjugated) **Conventional drugs** Immune activators Radioisotopes Toxins Enzyme/pro-drug ("ADEPT") Viruses, genes etc

Use of modified monoclonal antibodies

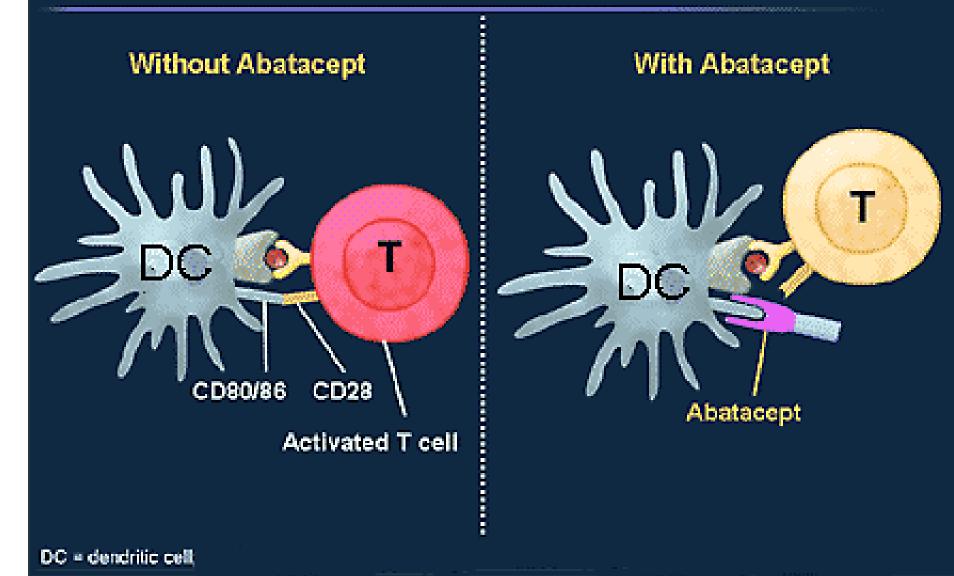


Conjugated/Modification of Antibody

Antibody	Conjugate / modification	Application
anti-CD20	Covalently attached tiuxetan	Radiotherapy for non-Hodgkin lymphoma
	(yttrium-90 chelator)	(Zevalin)
(various)	Covalently attached PEG	Increased serum half life
(various)	Mutant Fc domain with higher	Increased serum half life
	affinity for Fc receptors	
anti-ganglioside GD ₂	IL-2 fusion	Recruit T-cells to tumor
anti-HER2	Anchored to a liposome	In animal model of breat cancer, worked
	containing doxorubicin	better than anti-HER2 or doxorubicin alone.
(various)	Enzyme fusion	Prodrug activation (esp. for cancer)



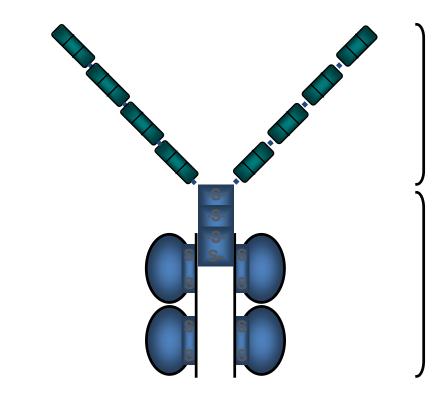
Antibody-directed Enzyme Prodrug Therapy (ADEPT)



Nature Reviews Cancer 2, 143-148 (February 2002)

A Human Immunoglobulin Receptor Fusion Protein

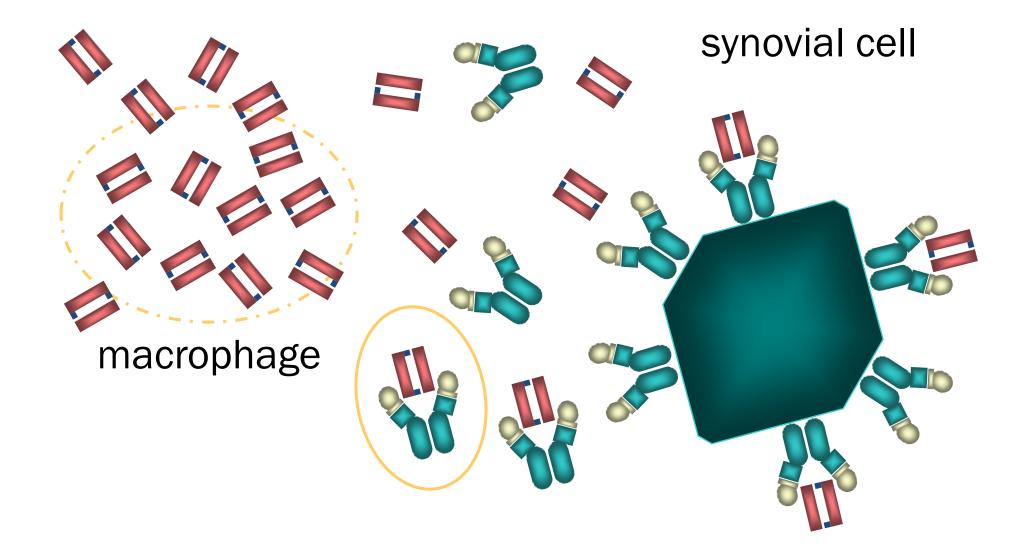
Abatacept Selectively Modulates T Cell Activation



Etanercept (Enbrel[®])

- biologic modifier
- recombinant human tumor necrosis factor receptor fusion protein
- binds & inactivates soluble TNF
- subcutaneously, once or twice a week
- retards erosive disease

Etanercept (Enbrel[®])


soluble TNF receptor fusion protein

extracellular human TNF-receptor p75 monomer

human IgG1 Fc domain

Soluble TNF receptor binding

CHO cells : Platform for Mab Production in Large Scale

- Safety for use in humans
- Similar glycan structure with natural human mAb
- Ease of transfection
- Presence of a powerful gene amplification system
- Adaptation to growth in suspension and serum-free medium
- Ability to grow at high densities

Some Examples of Approved Conjugated/Modified Mabs

- Radiolabeled antibodies:
 - 2002 Ibritumomab tiuxetan (Zevalin) Y-90 or In-111 + anti-CD20 (NHL)
 - 2003 Tositumomab-I-131 (Bexxar) anti-CD20 (NHL)
 - OncoScint (for colorectal and ovarian cancer, CEA) and ProstaScint (for prostate cancer)
- Immunotoxins
 - 2000 Gemtuzumab ozogamicin (Mylotarg). ozogamicin- anti-CD33 (AML)
- Fc conjugated peptides
 - 1998 Etanercept (Enbrel) IgG1-Fc/p75 exodomain of TNFR (RA)
- Pegylated
 - 2008 Certolizumab pegol (Cimzia) PEG- Fab anti-TNF-alpha

Immunology/Transplantation mAbs

Orthoclone[™] 1986 1997 Zenapax ™ Simulect ™ 1998 **Remicade**[™] 1998 Humira ™ 2002 Xolair ™ 2003 2003 Raptiva ™ Tysabri ™ 2004 Soliris ™ 2007

Transplant rejection Transplant rejection Transplant rejection Crohn's disease Rheumatoid arthritis **Allergy-related asthma Psoriasis Multiple sclerosis Paroxysmal nocturnal** hemoglobinuria

Anti-infective mAb

 Synagis ™ 1998 Prevention of infant respiratory syncytial virus infection

Human mAb (trade name; company name)	Description	Indication of first US approval	FDA designations	Date of first US (EU) approval
Adalimumab (Humira; Abbott)	TNF-specific, lgG1к	Rheumatoid arthritis	S	31 Dec 2002 (8 Sep 2003)
Panitumumab (Vectibix; Amgen)	EGFR-specific, lgG2ĸ	Colorectal cancer	P, FT, AA	27 Sep 2006 (3 Dec 2007)
Golimumab (Simponi; Centocor)	TNF-specific, lgG1	Rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis	S	24 Apr 2009 (1 Oct 2009)
Canakinumab (Ilaris; Novartis)	IL-1β-specific, IgG1κ	Cryopyrin-associated periodic syndromes	Р, О	18 Jun 2009 (23 Oct 2009)
Ustekinumab (Stelara; Johnson & Johnson)	IL-12/IL-23 p40- specific, IgG1	Plaque psoriasis	S	25 Sep 2009 (16 Jan 2009)
Ofatumumab (Arzerra; Genmab)	CD20-specific, lgG1	Chronic lymphocytic leukaemia	P, FT	26 Oct 2009 (19 Apr 2010)
Denosumab (Prolia; Amgen)	RANKL-specific, lgG2	Treatment of postmenopausal osteoporosis [‡]	S	1 Jun 2010 (26 May 2010)
Raxibacumab	PA-specific, IgG1	Inhalation anthrax	P, FT, O	Under review by the FDA
Belimumab	B lymphocyte stimulator-specific, lgG1	Systemic lupus erythematosus	P, FT	Under review by the FDA and the EMA
Ipilimumab	CTLA4-specific, lgG1	Metastatic melanoma	P, FT, O	Under review by the FDA and the EMA

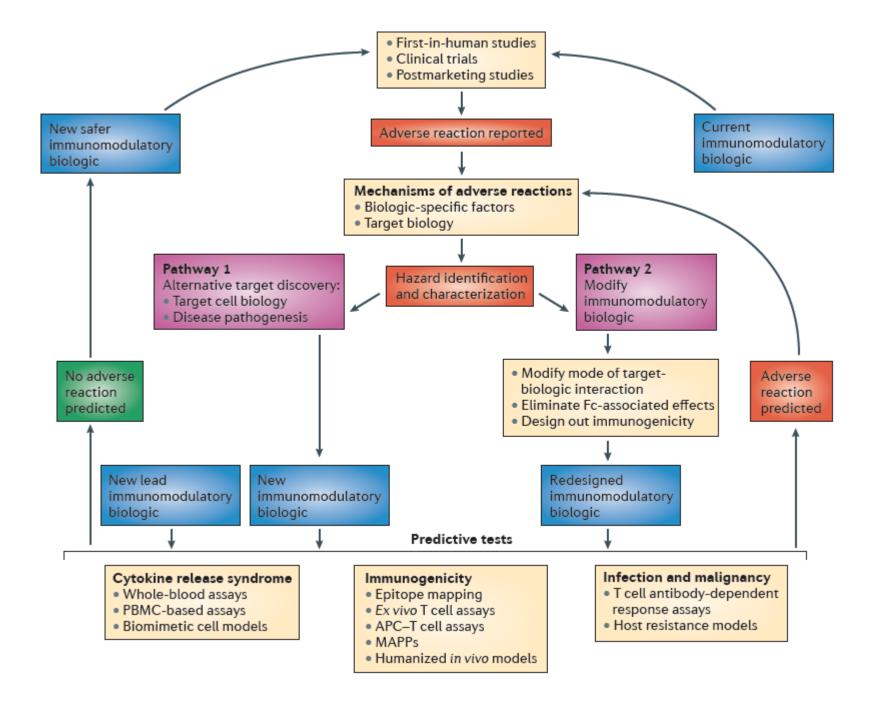
Human mAbs approved or under FDA review

Human mAb (trade name; company name)	Description	Indication of first US approval	FDA designations	Date of first US (EU) approval
Adalimumab (Humira; Abbott)	TNF-specific, IgG1κ	Rheumatoid arthritis	S	31 Dec 2002 (8 Sep 2003)
Panitumumab (Vectibix; Amgen)	EGFR-specific, IgG2κ	Colorectal cancer	P, FT, AA	27 Sep 2006 (3 Dec 2007)
Golimumab (Simponi; Centocor)	TNF-specific, IgG1	Rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis	S	24 Apr 2009 (1 Oct 2009)
Canakinumab (Ilaris; Novartis)	IL-1β-specific, IgG1κ	Cryopyrin- associated periodic syndromes	P,O	18 Jun 2009 (23 Oct 2009)
Ustekinumab (Stelara; Johnson & Johnson)	lL-12/IL-23 p40-specific, lgG1	Plaque psoriasis	S	25 Sep 2009 (16 Jan 2009)
Ofatumumab (Arzerra; Genmab)	CD20-specific, lgG1	Chronic lymphocytic leukaemia	P, FT	26 Oct 2009 (19 Apr 2010)
Denosumab (Prolia; Amgen)	RANKL- specific, IgG2	Treatment of postmenopausal osteoporosis [‡]	S	1 Jun 2010 (26 May 2010)
Raxibacumab	PA-specific, IgG1	Inhalation anthrax	P, FT, O	Under review by the FDA
Belimumab	B lymphocyte stimulator- specific, lgG1	Systemic lupus erythematosus	P, FT	Under review by the FDA and the EMA
lpilimumab	CTLA4-specific, lgG1	Metastatic melanoma	P, FT, O	Under review by the FDA and the EMA

AA, accelerated approval; CTLA, cytotoxic T lymphocyte-associated antigen; EGFR, epidermal growth factor receptor; EMA, European Medicines Agency; EU, European Union; FDA, US Food and Drug Administration; FT, FDA fast track drug; Ig, immunoglobulin; IL, interleukin; mAb, monoclonal antibody; O, FDA orphan drug; P, priority review; PA, *Bacillus anthracis* protective antigen; RANKL, receptor for activation of nuclear factor-κB ligand; S, standard review; TNF, tumour necrosis factor. *As of June 2010. *Also approved in Europe for the treatment of bone loss in patients with prostate cancer undergoing hormone ablation therapy.

Optimal Therapeutic Antibody Selection

- Target Selection
 - Disease target(s)
 - Biochemical pathways
 - Molecular target in pathway
 - Expression level and distribution
- Format selection
 - Half-life
 - Effector function
 - Binding affinity
 - Potential problems in sequence


 Screening and epitope selection

- Block interaction b/w ligandreceptor
- Mediate effect after binding
 - Cross-link to intracelluar signal
 - Deliver toxic payload
 - Use effector function to kill
- Antibody generation
 - Rodent immunization
 - Phage-display library

SWOT diagram for therapeutic Mabs and Fc fusion proteins

Major Strengths:	Major Weaknesses:
 Targets that cannot be addressed with small molecules (e.g., protein-protein interactions) Half-life leads to less frequent dosing Efficacy ADCC/CDC (i.e., immune system functionality) 	 Parenteral delivery (IV, SC) Limitation to extracellular and cell-surface targets Cost, and cost of goods driving the pricing Immunogenicity and injection site reactions
Major Opportunities:	Major Threats:
 Delivery improvements (e.g., transdermal, oral, intranasal) Modified Fc; fine-tuning immune system functionality Extended and/or tunable T1/2 Multispecificity (e.g., ability to engage multiple targets while retaining long T1/2 Novel scaffolds, approaches Tissue targeting, e.g., ability to cross BBB 	 Safety concerns in a post- Tegenero TGN-1412 era Small molecules functioning in same pathways as biologic Third party payer restrictions on reimbursement Follow-on-biologics Perception of a limited number of high quality targets leading to intense competition on certain "hot" targets (e.g., TNF-α, CD20)

Strohl, W. 2008: Therapeutic Monoclonal Antibodies: Past, Present, and Future



Future trends

- Opportunities in major therapeutic categories
 - Anticancer therapeutics
 - Immunological agents
 - Anti-infective agents
- Increase in marketing approvals if success rates are consistent with previous rates
- Human mAbs
- Designed protein scaffolds/domains

Fc Fusion Protein As drugs

- Fc scaffold + Fused peptide
- Immune effector function can be conserved or omitted
- Natural scaffold + building blocks

Ranking of Fc effector function potentials for therapeutic Abs

Therapeutic Ab type	Class I: cell-bound antigen stable upon Ab binding. MOA involving Fc effector function (ADCC, CDC, ADCP)	Class II: cell- bound antigen. MOA not involving Fc effector function	Class III: soluble antigen. MOA not involving Fc effector function (blocking)
lgG1 and lgG3	High	Moderate	Low
IgG1 and IgG3 with Fc mutations to enhance Fc functionality	High	Not applicable	Not applicable
Afucosylated IgG1	High	Not applicable	Not applicable
IgG1 and IgG3 with Fc mutations to reduce Fc functionality, or aglycosylated IgG1 and IgG3	Not applicable	Low	Low
IgG2 and IgG4; IgG2 and IgG4 with Fc mutations to reduce Fc functionality, or aglycosylated IgG2 and IgG4	Not applicable	Low	Low

Ab, antibody; ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; CDC, complement-dependent cytotoxicity; Fc, crystallizable fragment; IgG, immunoglobulin G; MOA, mechanism of action.

Nature Reviews Drug Discovery 10, 101-111 (February 2011)

Fc fusion proteins

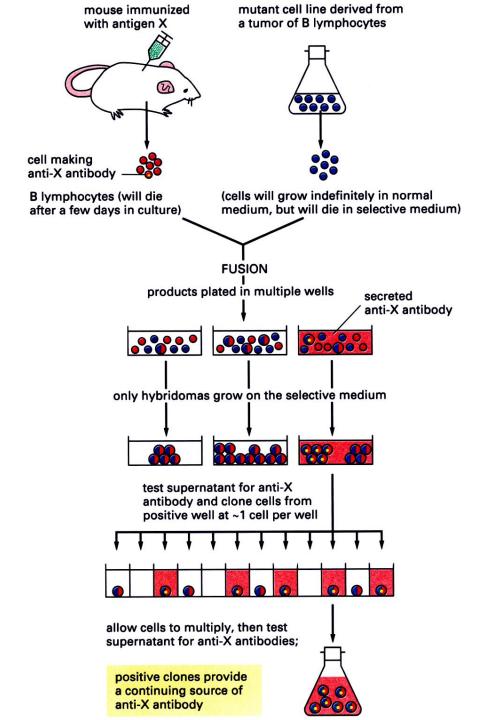
Trade name (generic name)	Description	Indication of first FDA approval	Stage	Company
Fc-fusion				
Nulojix (belatacept)	CTLA-4 fused to the Fc of human IgG1	Organ rejection	FDA Approved (2011)	Bristol-Meyers Squibb
Eylea (aflibercept)	VEGFR1/VEGFR2 fused to the Fc of human IgG1	Age related macular degeneration	FDA Approved (2011)	Regeneron Pharmaceuticals
Arcalyst (rilonacept)	IL-1R fused to the Fc of human IgG1	Cryopyrin-associated periodic syndromes	FDA Approved (2008)	Regeneron Pharmaceuticals
NPlate (romiplostim)	Thrombopoietin-binding peptide fused to the Fc of human IgG1	Thrombocytopenia in chronic immune thrombocytopenic purpura patients	FDA Approved (2008)	Amgen/Pfizer
Orencia (abatacept)	Mutated CTLA-4 fused to the Fc of human IgG1	Rheumatoid arthritis	FDA Approved (2005)	Bristol-Meyers Squi
Amevive (alefacept)	LFA-3 fused to the Fc of human IgG1	Psoriasis and transplant rejection	FDA Approved (2003)	Astellas Pharma
Enbrel (etanercept)	TNFR fused to the Fc of human IgG1	Rheumatoid arthritis	FDA Approved (1998)	Amgen/Pfizer

Name	Scaffold or format	Developer or licensee	Parent protein structure	Clinical trial phase	Disease	Target
Ecallantide (Kalbitor/ DX88)	Kunitz domain	Dyax	Human lipoprotein- associated coagulation inhibitor (LACI)	FDA approved (December 2009)	Hereditary angioedema	Kallikrein inhibitor
TRU-015	SMIP	Trubion/Pfizer	Various origin and length	Phase IIb	NHL	CD20
Dom-0200/ART621	Domain antibody	Domantis (now GlaxoSmithKline)/ Cephalon	V _H or V _L antibody domain; 100–130 amino acids	Phase II	Rheumatoid arthritis and psoriasis	TNF
MT103	BITE	Micromet	scFv-scFv; 200-260	Phase II	ALL	CD19 and CD3
			amino acids	Phase I	NHL	
Angiocept (BMS-844203/ CT-322)	Adnectin	Adnexus (owned by Bristol-Myers Squibb)	10 th FN3 domain of fibronectin; 94 amino acids	Phase II	Colorectal cancer, NSCLC and glioblastoma	VEGFR2
ALX-0081	Nanobody	Ablynx	VHH; ~100 amino acids	Phase II	ACS and TTP	vWF
ESBA105	Stable scFv	ESBATech/Alcon	scFv with hyperstable properties	Phase II	Uveitis	TNF
AMG-220 (C326)	Avimer	Avidia (owned by Amgen)	Domain A of LDL receptor; a repeating motif of ~35 amino acids	Phase I	Crohn's disease	IL-6
MT110	BITE	Micromet	scFv–scFv; ~500 amino acids	Phase I	Lung and gastric cancers	EPCAM and CD3
ABY-002	Affibody	Affibody	Z domain of protein A from Staphylococcus aureus; 58 amino acids	Phase I	Breast cancer imaging	HER2
MP0112	DARPin	Molecular Partners	Ankyrin repeat proteins; 67 amino acids plus a repeating motif of 33 amino acids	Phase I	Ophthalmological diseases	VEGF
PRS-050 (Angiocal)	Anticalin	Pieris	Lipocalin; 160–180 amino acids	Phase I starts early 2010	Solid tumours	VEGF

ACS, acute coronary syndrome; ALL, acute lymphoblastic lymphoma; BiTE, bispecific T cell engager; DARPin, designed ankyrin repeat protein; EPCAM, epithelial cell adhesion molecule; FDA, United States Food and Drug Administration; HER2, human epidermal growth factor receptor 2; IL, interleukin; LDL, low-density lipoprotein; NHL, non Hodgkin's lymphoma; NSCLC, non-small-cell lung carcinoma; R, receptor; scFv: single-chain variable domain antibody fragment; SMIP, small modular immunopharmaceutical; TNF, tumour necrosis factor; TTP, thrombotic thrombocytopenic purpura; VEGF, vascular endothelial growth factor; V_H, heavy chain variable domain (in camelids); V_H, light chain variable domain; vWF, von Willebrand factor.

Attraction of mAbs

- Expansion of therapeutics pipeline
- High(er) approval success rates
- Established development and approval pathways
- Established production methods
- Competitive research and development times
- Potentially large markets


Global focus on mAb therapeutics

- Acquisitions by major pharmaceutical firms
 - Merck acquisition of Abmaxis, GlycoFi
 - GSK acquisition of Domantis
 - Eisai acquisition of Morphotek
 - AstraZeneca acquisition of CAT, MedImmune
- Development in Asia
 - First marketing approvals in China
 - "Generic" mAbs in India and S. Korea

Next generation mAbs

- Fragments, e.g. Fab, single chains
 - Smaller, easier/less costly to manufacture
 - But, shorter circulating half-life, no effector functions
 - Approved Fabs: Reopro (1994) and Lucentis (2006)
- Modified versions
 - Enhance ADCC/CDC functions
 - Modify pharmacokinetic properties pegylation
 - Modify affinity and specificity glycosylation, Fc region engineering

MBOC, 3rd edition, pg. 188

Name	Scaffold or format	Developer or licensee	Parent protein structure	Clinical trial phase	Disease	Target	
Ecallantide (Kalbitor/ DX88)	Kunitz domain	Dyax	Human lipoprotein- associated coagulation inhibitor (LACI)	FDA approved (December 2009)	Hereditary angioedema	Kallikrein inhibitor	
TRU-015	SMIP	Trubion/Pfizer	Various origin and length	Phase IIb	NHL	CD20	
Dom-0200/ART621	Domain antibody	Domantis (now GlaxoSmithKline)/ Cephalon	V _H or V _L antibody domain; 100–130 amino acids	Phase II	Rheumatoid arthritis and psoriasis	TNF	
MT103	BITE	Micromet scFv-scFv; 200-260 Phase II	ALL	CD19 and CD3			
			amino acids Phase I		NHL		
Angiocept (BMS-844203/ CT-322)	Adnectin	Adnexus (owned by Bristol-Myers Squibb)	10 th FN3 domain of fibronectin; 94 amino acids	Phase II	Colorectal cancer, NSCLC and glioblastoma	VEGFR2	
ALX-0081	Nanobody	Ablynx	VHH; ~100 amino acids	Phase II	ACS and TTP	vWF	
ESBA105	Stable scFv	ESBATech/Alcon	scFv with hyperstable properties	Phase II	Uveitis	TNF	
AMG-220 (C326)	Avimer	Avidia (owned by Amgen)	Domain A of LDL receptor; a repeating motif of ~35 amino acids	Phase I	Crohn's disease	IL-6	
MT110	Bite	Micromet	scFv-scFv; ~500 amino acids	Phase I	Lung and gastric cancers	EPCAM and CD3	
ABY-002	Affibody	Affibody	Z domain of protein A from Staphylococcus aureus; 58 amino acids	Phase I	Breast cancer imaging	HER2	
MP0112	DARPin	Molecular Partners	Ankyrin repeat proteins; 67 amino acids plus a repeating motif of 33 amino acids	Phase I	Ophthalmological diseases	VEGF	
PRS-050 (Angiocal)	Anticalin	Pieris	Lipocalin; 160–180 amino acids	Phase I starts early 2010	Solid tumours	VEGF	

ACS, acute coronary syndrome; ALL, acute lymphoblastic lymphoma; BiTE, bispecific T cell engager; DARPin, designed ankyrin repeat protein; EPCAM, epithelial cell adhesion molecule; FDA, United States Food and Drug Administration; HER2, human epidermal growth factor receptor 2; IL, interleukin; LDL, low-density lipoprotein; NHL, non Hodgkin's lymphoma; NSCLC, non-small-cell lung carcinoma; R, receptor; scFv: single-chain variable domain antibody fragment; SMIP, small modular immunopharmaceutical; TNF, tumour necrosis factor; TTP, thrombotic thrombocytopenic purpura; VEGF, vascular endothelial growth factor; V_H, heavy chain variable domain (in camelids); V_L, light chain variable domain; vWF, von Willebrand factor.